Namespaces
Variants
Actions

Dehn invariant

From Encyclopedia of Mathematics
Revision as of 17:04, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An invariant of polyhedra in three-dimensional space that decides whether two polyhedra of the same volume are "scissors congruent" (see Equal content and equal shape, figures of; Hilbert problems; Polyhedron).

Quite generally, a scissors-congruence invariant assigns to a polytope in space an element in a group such that , if is degenerate, and if there is a motion of the space such that .

For the Dehn invariant, the group chosen is the tensor product . To a polytope with edges one associates the element , where is the length of and is the dihedral angle of the planes meeting at . The Sydler theorem states that two polytopes in three-dimensional space are scissors equivalent if and only if they have equal volume and the same Dehn invariant, thus solving Hilbert's third problem in a very precise manner (cf. also Hilbert problems).

For higher dimensions there is a generalization, called the Hadwiger invariant or Dehn–Hadwiger invariant. This has given results in dimension four, [a4], and for the case when the group consists of translations only, [a2].

References

[a1] P. Cartier, "Decomposition des polyèdres: le point sur le troisième problème de Hilbert" Sem. Bourbaki , 1984/5 (1986) pp. 261–288
[a2] C.H. Sah, "Hilbert's third problem: scissors congruence" , Pitman (1979)
[a3] V.G. Boltianskii, "Hilbert's third problem" , Wiley (1978)
[a4] B. Jessen, "Zur Algebra der Polytope" Göttinger Nachrichte Math. Phys. (1972) pp. 47–53
How to Cite This Entry:
Dehn invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dehn_invariant&oldid=13481
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article