Namespaces
Variants
Actions

Difference between revisions of "De la Vallée-Poussin criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(a typo, I guess?)
 
(2 intermediate revisions by one other user not shown)
Line 5: Line 5:
 
{{TEX|done}}
 
{{TEX|done}}
  
A criterion first proved by Jordan for the convergence of Fourier series in {{Cite|De}}.  
+
A criterion first proved by De la Vallée-Poussin for the convergence of Fourier series in {{Cite|De}}.  
  
 
'''Theorem'''
 
'''Theorem'''
Line 12: Line 12:
 
F (t) := \frac{1}{t} \int_0^t \left(f(x+u)+f(x-u) - 2 f(x)\right)\, du \qquad \mbox{for } t>0
 
F (t) := \frac{1}{t} \int_0^t \left(f(x+u)+f(x-u) - 2 f(x)\right)\, du \qquad \mbox{for } t>0
 
\]
 
\]
and $F(0)=0$. If $f$ has bounded variation on some interval $[0, \delta]$ with $\delta>0$, then the Fourier series of $f$ converges to $f(x)$ at $x$.
+
and $F(0)=0$. If $F$ has bounded variation on some interval $[0, \delta]$ with $\delta>0$, then the Fourier series of $f$ converges to $f(x)$ at $x$.
  
  
The de la Vallée-Poussin criterion is stronger than the [[Dini criterion|Dini criterion]], the [[Dirichlet theorem|Dirichlet criterion]], and the [[Jordan criterion|Jordan criterion]]. Cp. with Section 3 of chapter III in Volume 1 of {{Cite|Ba}}.  
+
The de la Vallée-Poussin criterion is stronger than the [[Dini criterion|Dini criterion]], the [[Dirichlet theorem|Dirichlet criterion]], and the [[Jordan criterion|Jordan criterion]], it is weaker than the [[Lebesgue criterion]] and not comparable to the [[Young criterion]]. Cp. with Section 3 of chapter III in Volume 1 of {{Cite|Ba}}.  
  
 
====References====
 
====References====

Latest revision as of 20:45, 16 October 2012

for the convergence of Fourier series

2020 Mathematics Subject Classification: Primary: 42A20 [MSN][ZBL]

A criterion first proved by De la Vallée-Poussin for the convergence of Fourier series in [De].

Theorem Consider a summable $2\pi$ periodic function $f$, a point $x\in \mathbb R$ and the function \[ F (t) := \frac{1}{t} \int_0^t \left(f(x+u)+f(x-u) - 2 f(x)\right)\, du \qquad \mbox{for } t>0 \] and $F(0)=0$. If $F$ has bounded variation on some interval $[0, \delta]$ with $\delta>0$, then the Fourier series of $f$ converges to $f(x)$ at $x$.


The de la Vallée-Poussin criterion is stronger than the Dini criterion, the Dirichlet criterion, and the Jordan criterion, it is weaker than the Lebesgue criterion and not comparable to the Young criterion. Cp. with Section 3 of chapter III in Volume 1 of [Ba].

References

[Ba] N.K. Bary, "A treatise on trigonometric series" , Pergamon, 1964.
[De] Ch.J. de la Vallée-Poussin, "Un nouveau cas de convergence des séries de Fourier" Rend. Circ. Mat. Palermo , 31 (1911) pp. 296–299.
[Ed] R. E. Edwards, "Fourier series". Vol. 1. Holt, Rineheart and Winston, 1967.
[Zy] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) MR0933759 Zbl 0628.42001
How to Cite This Entry:
De la Vallée-Poussin criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_la_Vall%C3%A9e-Poussin_criterion&oldid=28435
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article