# Difference between revisions of "De Moivre formula"

m (two \varphi bicame \phi as all) |
|||

Line 5: | Line 5: | ||

The formula expressing the rule for raising a [[Complex number|complex number]], expressed in trigonometric form | The formula expressing the rule for raising a [[Complex number|complex number]], expressed in trigonometric form | ||

\begin{equation} | \begin{equation} | ||

− | z = \rho(\cos\ | + | z = \rho(\cos\phi + i\sin\phi), |

\end{equation} | \end{equation} | ||

to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent: | to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent: |

## Latest revision as of 11:03, 4 June 2013

The formula expressing the rule for raising a complex number, expressed in trigonometric form
\begin{equation}
z = \rho(\cos\phi + i\sin\phi),
\end{equation}
to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent:

\[ z^n = [\rho(\cos \phi + i \sin \phi)]^n = \rho^n(\cos n\phi + i \sin n \phi). \]

The formula was found by A. de Moivre (1707), its modern notation was suggested by L. Euler (1748).

De Moivre's formula can be used to express $ \cos n \phi $ and $ \sin n \phi $ in powers of $ \cos \phi $ and $ \sin \phi $:

\[ \cos n\phi = \cos^n \phi - \binom{n}{2} \cos^{n-2} \phi \sin^2 \phi + \binom{n}{4}\cos^{n-4}\phi \sin^4\phi - \dots, \]

\[ \sin n\phi = \binom{n}{1}\cos^{n-1}\phi \sin \phi - \binom{n}{3} \cos^{n-3}\phi \sin^3\phi + \dots. \]

Inversion of de Moivre's formula leads to a formula for extracting roots of a complex number:

\[ [\rho (\cos \phi + i \sin \phi)]^{1/n} = \rho^{1/n}\left( \cos \frac{\phi + 2 \pi k}{n} + i \sin \frac{\phi + 2 \pi k}{n} \right), \quad k = 0, 1, \dots, \] which is also sometimes called de Moivre's formula.

#### Comments

#### References

[a1] | A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian) |

**How to Cite This Entry:**

De Moivre formula.

*Encyclopedia of Mathematics.*URL: http://www.encyclopediaofmath.org/index.php?title=De_Moivre_formula&oldid=29831