Namespaces
Variants
Actions

Difference between revisions of "Cremona group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270401.png" /> of birational automorphisms of a projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270402.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270403.png" />; or, equivalently, the group of Cremona transformations (cf. [[Cremona transformation|Cremona transformation]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270404.png" />.
+
The group $\def\Cr#1{{\rm Cr}(\mathbb{P}_k^#1)} \Cr{n}$ of birational automorphisms of a projective space $\mathbb{P}_k^n$
 +
over a field $k$; or, equivalently, the group of Cremona
 +
transformations (cf.
 +
[[Cremona transformation|Cremona transformation]]) of $\mathbb{P}_k^n$.
  
The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270405.png" /> of projective transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270406.png" /> is contained in a natural manner in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270407.png" /> as a subgroup; when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270408.png" /> it is a proper subgroup. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c0270409.png" /> is isomorphic to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704010.png" /> of automorphisms over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704011.png" /> of the field of rational functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704012.png" /> variables over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704013.png" />. The fundamental result concerning the Cremona group for the projective plane is Noether's theorem: The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704014.png" /> over an algebraically closed field is generated by the quadratic transformations or, equivalently, by the standard quadratic transformation and the projective transformations (see [[#References|[1]]], [[#References|[7]]]); relations between these generators can be found in
+
The group ${\rm PGL}(n+1,k)$ of projective transformations of $\mathbb{P}_k^n$ is contained in a
 +
natural manner in $\Cr{n}$ as a subgroup; when $n\ge 2$ it is a proper
 +
subgroup. The group $\Cr{n}$ is isomorphic to the group ${\rm Aut}\; k(x_1,\dots,x_n)$ of
 +
automorphisms over $k$ of the field of rational functions in $n$
 +
variables over $k$. The fundamental result concerning the Cremona
 +
group for the projective plane is Noether's theorem: The group $\Cr{2}$
 +
over an algebraically closed field is generated by the quadratic
 +
transformations or, equivalently, by the standard quadratic
 +
transformation and the projective transformations (see
 +
[[#References|[1]]],
 +
[[#References|[7]]]); relations between these generators can be found
 +
in
  
(see also ). It is not known to date (1987) whether the Cremona group is simple. There is a generalization of Noether's theorem to the case in which the ground field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704015.png" /> is not algebraically closed (see [[#References|[6]]]).
+
(see also ). It is not known to date (1987) whether the Cremona group
 +
is simple. There is a generalization of Noether's theorem to the case
 +
in which the ground field $k$ is not algebraically closed (see
 +
[[#References|[6]]]).
  
One of the most difficult problems in birational geometry is that of describing the structure of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704016.png" />, which is no longer generated by the quadratic transformations. Almost all literature on Cremona transformations of three-dimensional space is devoted to concrete examples of such transformations. Finally, practically nothing is known about the structure of the Cremona group for spaces of dimension higher than 3.
+
One of the most difficult problems in birational geometry is that of
 +
describing the structure of the group $\Cr{3}$, which is no longer
 +
generated by the quadratic transformations. Almost all literature on
 +
Cremona transformations of three-dimensional space is devoted to
 +
concrete examples of such transformations. Finally, practically
 +
nothing is known about the structure of the Cremona group for spaces
 +
of dimension higher than 3.
  
An important direction of research in the theory of Cremona groups is the investigation of subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704017.png" />. The finite subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704018.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704019.png" /> algebraically closed, have been described up to conjugacy (see [[#References|[8]]], and also [[#References|[6]]]). A classification of all involutions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704020.png" /> was obtained as far back as 1877 by E. Bertini (see e.g. [[#References|[4]]], [[#References|[5]]]). The question of describing all involutions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704022.png" />, remains open. All maximal connected algebraic subgroups in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704023.png" /> were described by F. Enriques in 1893 (see [[#References|[4]]]): They are just the automorphism groups of all minimal models of rational surfaces, i.e. of the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704024.png" />, the quadric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704025.png" /> and of the series of ruled surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704027.png" />. There are a few generalizations of this result (see [[#References|[3]]], [[#References|[9]]]) to the case of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027040/c02704029.png" />.
+
An important direction of research in the theory of Cremona groups is
 +
the investigation of subgroups of $\Cr{n}$. The finite subgroups of $\Cr2$,
 +
with $k$ algebraically closed, have been described up to conjugacy
 +
(see
 +
[[#References|[8]]], and also
 +
[[#References|[6]]]). A classification of all involutions in $\Cr{2}$ was
 +
obtained as far back as 1877 by E. Bertini (see e.g.
 +
[[#References|[4]]],
 +
[[#References|[5]]]). The question of describing all involutions in
 +
$\Cr{n}$, $n\ge3$, remains open. All maximal connected algebraic subgroups in
 +
$\Cr{2}$ were described by F. Enriques in 1893 (see
 +
[[#References|[4]]]): They are just the automorphism groups of all
 +
minimal models of rational surfaces, i.e. of the plane $\mathbb{P}_k^2$, the
 +
quadric $\mathbb{P}^1\times\mathbb{P}^1$ and of the series of ruled surfaces $\mathbb{P}_N$, $n\ge 2$. There are a
 +
few generalizations of this result (see
 +
[[#References|[3]]],
 +
[[#References|[9]]]) to the case of the group $\Cr{n}$, $n\ge 3$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.B. Coble,   "Algebraic geometry and theta functions" , Amer. Math. Soc. (1929)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Demazure,   "Sous-groupes algébriques de rang maximum du groupes de Cremona" ''Ann. Sci. Ecole Norm. Sup. Sér. 4'' , '''3''' : 4 (1970) pp. 507–588</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Godeaux,   "Les transformations birationelles du plan" , Gauthier-Villars (1927)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H.P. Hudson,   "Cremona transformations in plane and space" , Cambridge Univ. Press (1927)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> Yu.I. Manin,   "Rational surfaces over perfect fields II" ''Math. USSR-Sb.'' , '''1''' (1967) pp. 141–168 ''Mat. Sb.'' , '''72''' : 2 (1967) pp. 161–192</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> M. Nagata,   "On rational surfaces II" ''Mem. Coll. Sci. Univ. Kyoto'' , '''33''' (1960) pp. 271–293</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A. Wiman,   "Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene" ''Math. Ann.'' , '''48''' (1897) pp. 195–240</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> H. Umemura,   "Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables" ''Nagoya Math. J.'' , '''79''' (1980) pp. 47–67</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD>
 +
<TD valign="top"> "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965) {{MR|}} {{ZBL|0172.37901}} {{ZBL|0153.22401}} </TD></TR><TR><TD valign="top">[2]</TD>
 +
<TD valign="top"> A.B. Coble, "Algebraic geometry and theta functions" , Amer. Math. Soc. (1929) {{MR|0733252}} {{MR|0123958}} {{ZBL|55.0808.02}} </TD></TR><TR><TD valign="top">[3]</TD>
 +
<TD valign="top"> M. Demazure, "Sous-groupes algébriques de rang maximum du groupes de Cremona" ''Ann. Sci. Ecole Norm. Sup. Sér. 4'' , '''3''' : 4 (1970) pp. 507–588 {{MR|0284446}} {{ZBL|0223.14009}} </TD></TR><TR><TD valign="top">[4]</TD>
 +
<TD valign="top"> L. Godeaux, "Les transformations birationelles du plan" , Gauthier-Villars (1927)</TD>
 +
</TR><TR><TD valign="top">[5]</TD>
 +
<TD valign="top"> H.P. Hudson, "Cremona transformations in plane and space" , Cambridge Univ. Press (1927) {{MR|1521296}} {{ZBL|53.0595.01}} </TD></TR><TR><TD valign="top">[6]</TD>
 +
<TD valign="top"> Yu.I. Manin, "Rational surfaces over perfect fields II" ''Math. USSR-Sb.'' , '''1''' (1967) pp. 141–168 ''Mat. Sb.'' , '''72''' : 2 (1967) pp. 161–192 {{MR|0225781}} {{ZBL|0182.23701}} </TD></TR><TR><TD valign="top">[7]</TD>
 +
<TD valign="top"> M. Nagata, "On rational surfaces II" ''Mem. Coll. Sci. Univ. Kyoto'' , '''33''' (1960) pp. 271–293 {{MR|0126444}} {{ZBL|0100.16801}} </TD></TR><TR><TD valign="top">[8]</TD>
 +
<TD valign="top"> A. Wiman, "Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene" ''Math. Ann.'' , '''48''' (1897) pp. 195–240 {{MR|1510931}} {{ZBL|30.0600.01}} </TD></TR><TR><TD valign="top">[9]</TD>
 +
<TD valign="top"> H. Umemura, "Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables" ''Nagoya Math. J.'' , '''79''' (1980) pp. 47–67 {{MR|0587409}} {{ZBL|0412.14007}} </TD></TR></table>

Latest revision as of 23:51, 30 March 2012

The group $\def\Cr#1{{\rm Cr}(\mathbb{P}_k^#1)} \Cr{n}$ of birational automorphisms of a projective space $\mathbb{P}_k^n$ over a field $k$; or, equivalently, the group of Cremona transformations (cf. Cremona transformation) of $\mathbb{P}_k^n$.

The group ${\rm PGL}(n+1,k)$ of projective transformations of $\mathbb{P}_k^n$ is contained in a natural manner in $\Cr{n}$ as a subgroup; when $n\ge 2$ it is a proper subgroup. The group $\Cr{n}$ is isomorphic to the group ${\rm Aut}\; k(x_1,\dots,x_n)$ of automorphisms over $k$ of the field of rational functions in $n$ variables over $k$. The fundamental result concerning the Cremona group for the projective plane is Noether's theorem: The group $\Cr{2}$ over an algebraically closed field is generated by the quadratic transformations or, equivalently, by the standard quadratic transformation and the projective transformations (see [1], [7]); relations between these generators can be found in

(see also ). It is not known to date (1987) whether the Cremona group is simple. There is a generalization of Noether's theorem to the case in which the ground field $k$ is not algebraically closed (see [6]).

One of the most difficult problems in birational geometry is that of describing the structure of the group $\Cr{3}$, which is no longer generated by the quadratic transformations. Almost all literature on Cremona transformations of three-dimensional space is devoted to concrete examples of such transformations. Finally, practically nothing is known about the structure of the Cremona group for spaces of dimension higher than 3.

An important direction of research in the theory of Cremona groups is the investigation of subgroups of $\Cr{n}$. The finite subgroups of $\Cr2$, with $k$ algebraically closed, have been described up to conjugacy (see [8], and also [6]). A classification of all involutions in $\Cr{2}$ was obtained as far back as 1877 by E. Bertini (see e.g. [4], [5]). The question of describing all involutions in $\Cr{n}$, $n\ge3$, remains open. All maximal connected algebraic subgroups in $\Cr{2}$ were described by F. Enriques in 1893 (see [4]): They are just the automorphism groups of all minimal models of rational surfaces, i.e. of the plane $\mathbb{P}_k^2$, the quadric $\mathbb{P}^1\times\mathbb{P}^1$ and of the series of ruled surfaces $\mathbb{P}_N$, $n\ge 2$. There are a few generalizations of this result (see [3], [9]) to the case of the group $\Cr{n}$, $n\ge 3$.

References

[1] "Algebraic surfaces" Proc. Steklov Inst. Math. , 75 (1967) Trudy Mat. Inst. Steklov. , 75 (1965) Zbl 0172.37901 Zbl 0153.22401
[2] A.B. Coble, "Algebraic geometry and theta functions" , Amer. Math. Soc. (1929) MR0733252 MR0123958 Zbl 55.0808.02
[3] M. Demazure, "Sous-groupes algébriques de rang maximum du groupes de Cremona" Ann. Sci. Ecole Norm. Sup. Sér. 4 , 3 : 4 (1970) pp. 507–588 MR0284446 Zbl 0223.14009
[4] L. Godeaux, "Les transformations birationelles du plan" , Gauthier-Villars (1927)
[5] H.P. Hudson, "Cremona transformations in plane and space" , Cambridge Univ. Press (1927) MR1521296 Zbl 53.0595.01
[6] Yu.I. Manin, "Rational surfaces over perfect fields II" Math. USSR-Sb. , 1 (1967) pp. 141–168 Mat. Sb. , 72 : 2 (1967) pp. 161–192 MR0225781 Zbl 0182.23701
[7] M. Nagata, "On rational surfaces II" Mem. Coll. Sci. Univ. Kyoto , 33 (1960) pp. 271–293 MR0126444 Zbl 0100.16801
[8] A. Wiman, "Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene" Math. Ann. , 48 (1897) pp. 195–240 MR1510931 Zbl 30.0600.01
[9] H. Umemura, "Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables" Nagoya Math. J. , 79 (1980) pp. 47–67 MR0587409 Zbl 0412.14007
How to Cite This Entry:
Cremona group. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Cremona_group&oldid=17476
This article was adapted from an original article by V.A. Iskovskikh (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article