Namespaces
Variants
Actions

Cramér theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 60F10 [MSN][ZBL]

An integral limit theorem for the probability of large deviations of sums of independent random variables. Let $ X _ {1} , X _ {2} \dots $ be a sequence of independent random variables with the same non-degenerate distribution function $ F $, such that $ {\mathsf E} X _ {1} = 0 $ and such that the generating function $ {\mathsf E} e ^ {tX _ {1} } $ of the moments is finite in some interval $ | t | < H $( this last condition is known as the Cramér condition). Let

$$ {\mathsf E} X _ {1} ^ {2} = \sigma ^ {2} ,\ \ F _ {n} ( x) = {\mathsf P} \left ( \frac{1}{\sigma n ^ {1/2} } \sum _ {j = 1 } ^ { n } X _ {j} < x \right ) . $$

If $ x > 1 $, $ x = o ( \sqrt n ) $ as $ n \rightarrow \infty $, then

$$ \frac{1 - F _ {n} ( x) }{1 - \Phi ( x) } = \ \mathop{\rm exp} \left \{ \frac{x ^ {3} }{\sqrt n } \lambda \left ( \frac{x}{\sqrt n } \right ) \right \} \left [ 1 + O \left ( \frac{x}{\sqrt n } \right ) \right ] , $$

$$ \frac{F _ {n} (- x) }{\Phi (- x) } = \mathop{\rm exp} \left \{ - \frac{x ^ {3} }{\sqrt n } \lambda \left ( - { \frac{x}{\sqrt n } } \right ) \ \right \} \left [ 1 + O \left ( \frac{x}{\sqrt n } \right ) \right ] . $$

Here $ \Phi ( x) $ is the normal $ ( 0, 1) $ distribution function and $ \lambda ( t) = \sum _ {k = 0 } ^ \infty c _ {k} t ^ {k} $ is the so-called Cramér series, the coefficients of which depend only on the moments of the random variable $ X _ {1} $; this series is convergent for all sufficiently small $ t $. Actually, the original result, obtained by H. Cramér in 1938, was somewhat weaker than that just described.

References

[C] H. Cramér, "Sur un nouveau théorème-limite de la théorie des probabilités" , Act. Sci. et Ind. , 736 , Hermann (1938) Zbl 64.0529.01
[IL] I.A. Ibragimov, Yu.V. Linnik, "Independent and stationary sequences of random variables" , Wolters-Noordhoff (1971) (Translated from Russian) MR0322926 Zbl 0219.60027
[P] V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) MR0388499 Zbl 0322.60043 Zbl 0322.60042

Comments

See also Limit theorems; Probability of large deviations.

References

[E] R.S. Ellis, "Entropy, large deviations, and statistical mechanics" , Springer (1985) MR0793553 Zbl 0566.60097
How to Cite This Entry:
Cramér theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cram%C3%A9r_theorem&oldid=46552
This article was adapted from an original article by V.V. Petrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article