Namespaces
Variants
Actions

Difference between revisions of "Convergence of measures"

From Encyclopedia of Mathematics
Jump to: navigation, search
(refs format)
m
Line 3: Line 3:
 
[[Category:Classical measure theory]]
 
[[Category:Classical measure theory]]
  
{{TEX|want}}
+
{{TEX|done}}
  
A concept in measure theory, determined by a certain topology in a space of measures that are defined on a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261401.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261402.png" /> of subsets of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261403.png" /> or, more generally, in a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261404.png" /> of charges, i.e. countably-additive real or complex functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261405.png" />, defined on sets from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261406.png" />. The following are the most commonly used topologies in the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261407.png" /> consisting of bounded charges, i.e. charges for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261408.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261409.png" />.
+
A concept in measure theory, determined by a certain topology in a space of measures that are defined on a certain $\sigma$-algebra $\mathcal{B}$ of subsets of a space $X$ or, more generally, in a space $\mathcal{M} (X, \mathcal{B})$ of charges, i.e. countably-additive real (resp. complex) functions $\mu: \mathcal{B}\mapsto \mathbb R$ (resp. $\mathbb C$), often called
 +
also $\mathbb R$(resp. $\mathbb C$)-valued or signed measures.  
 +
The total variation measure of a $\mathbb C$-valued measure is defined on $\mathcal{B}$ as:
 +
\[
 +
|\mu| (B) :=\sup\, \left\{ \sum |\mu (B_i)|: \{B_i\}\subset
 +
\mathcal{B} \mbox{ is a countable partition of $B$}\right\}\, .
 +
\]
 +
In the real-valued case the above definition simplies as
 +
\[
 +
|\mu| (B) = \sup_{A\in \mathcal{B}, A\subset B}\, \left(|\mu (A)| + |\mu (X\setminus B)|\right)\, .
 +
\]
 +
The total variation of $\mu$ is then defined as $\|\mu\|_v :=
 +
|\mu| (X)$.
 +
The space $\mathcal{M}^b (X, \mathcal{B})$ of $\mathbb R$(resp.
 +
$\mathbb C$)-valued measure with finite total variation is a [[Banach space]] and the following are the most commonly used topologies.
  
1) In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614010.png" /> the norm
+
1) The norm or [[strong topology]]: $\mu_n\to \mu$ if and only
 +
if $\|\mu_n-\mu\|_v\to 0$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614011.png" /></td> </tr></table>
+
2) The [[weak topology]]: a sequence of measures $\mu_n \rightharpoonup \mu$ if and only if $F (\mu_n)\to F(\mu)$
 +
for every bounded linear functional $F$ on $\mathcal{M}^b$.
  
called the variation of the charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614012.png" />, is introduced. The convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614014.png" />, to a charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614015.png" /> in this norm is called convergence in variation.
+
3) When $X$ is a [[topological space]] and $\mathcal{B}$ the
 +
corresponding $\sigma$-algebra of [[Borel set|Borel sets]],
 +
we can introduce on $X$ the narrow topology. In this case $\mu_n$ converges to $\mu$
 +
if and only if
 +
\begin{equation}\label{e:narrow}
 +
\int f\, d\mu_n \to \int f\, d\mu
 +
\end{equation}
 +
for every bounded continuous function $f:X\to \mathbb R$(resp. $\mathbb C$).
 +
This topology is also called sometimes weak topology, however
 +
such notation is inconsistent with the Banach space theory,
 +
see below.
 +
The following is an important consequence of the narrow convergence: if $\mu_n$ converges narrowly to $\mu$, then
 +
$\mu_n (A)\to \mu (A)$ for any Borel set such that $|\mu| (\partial A)=0$.
  
2) In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614016.png" /> the ordinary weak topology is examined: Convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614018.png" />, in this topology (weak convergence) means that for any continuous linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614019.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614022.png" />. This convergence is equivalent to the fact that the sequence of charges is bounded, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614023.png" />, and that for any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614024.png" /> the sequence of values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614026.png" />. Weak convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614028.png" /> implies convergence of the integrals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614030.png" />, for any bounded function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614032.png" /> that is measurable with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614033.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614034.png" />.
+
4) When $X$ is a locally compact topological space and $\mathcal{B}$
 +
the $\sigma$-algebra of Borel sets yet another topology can be introduced, the so-called wide topology, or sometimes referred to
 +
as [[weak-star topology|weak$^\star$ topology]]. A sequence
 +
$\mu_n\rightharpoonup^\star \mu$ if and only if \eqref{e:narrow} holds
 +
for continuous functions which are compactly supported.
  
3) When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614035.png" /> is a topological space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614036.png" /> is its Borel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614037.png" />-algebra, a topology is examined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614038.png" /> which is also called the weak topology (or sometimes the narrow topology). It is defined as the weakest of the topologies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614039.png" /> relative to which all functionals of the form
+
This topology is in general weaker than the narrow topology.  
 +
If $X$ is compact
 +
and Hausdorff the [[Riesz representation theorem]] shows that
 +
$\mathcal{M}^b$ is the dual of the space $C(X)$ of continuous
 +
functions. Under this assumption the narrow and weak$^\star$ topology
 +
coincide with the usual [[weak-star topology|weak$^\star$ topology]]
 +
of the Banach space theory. Since in general $C(X)$ is not
 +
a reflexive space, it turns out that the narrow topology is in general weaker than the weak topology.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614040.png" /></td> </tr></table>
+
A topology analogous to the weak$^\star$ topology is defined
 +
in the more general space $\mathcal{M}^b_{loc}$ of locally bounded
 +
measures, i.e. those measures $\mu$ such that for any point $x\in X$
 +
there is a neighborhood $U$ with $|\mu| (U)<\infty$.
  
are continuous, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614041.png" /> is an arbitrary bounded continuous function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614042.png" />. This topology is weaker than the previous one, and convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614044.png" />, relative to it (weak or narrow convergence) is equivalent to the convergence of the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614046.png" />, for any Borel set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614047.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614048.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614049.png" /> and the operation of closure of a set is denoted by the bar.
+
http://www.encyclopediaofmath.org/index.php/Convergence_of_measures
 
 
4) When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614050.png" /> is a locally compact topological space (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614051.png" /> is a Borel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614052.png" />-algebra) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614053.png" /> the so-called wide topology is examined: the convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614055.png" /> (wide convergence), means convergence of the functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614057.png" />, for any continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614058.png" /> with compact support. This topology is weaker than the weak topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614059.png" />. An analogous topology is defined naturally in the wider space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614060.png" /> of locally bounded charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614061.png" />, i.e. charges such that for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614062.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614063.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614066.png" />.
 
  
 
====References====
 
====References====
 
{|
 
{|
 +
|-
 +
|valign="top"|{{Ref|AmFuPa}}|| L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems".
 +
Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. {{MR|1857292}}{{ZBL|0957.49001}
 +
|-
 
|valign="top"|{{Ref|Bo}}|| N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}} {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}} {{ZBL|1095.28001}} {{ZBL|0156.06001}}
 
|valign="top"|{{Ref|Bo}}|| N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}} {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}} {{ZBL|1095.28001}} {{ZBL|0156.06001}}
 
|-
 
|-
|valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}} {{ZBL|}}
+
|valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}}
 
|-
 
|-
 
|valign="top"|{{Ref|Bi}}|| P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}}
 
|valign="top"|{{Ref|Bi}}|| P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}}
 +
|-
 +
|valign="top"|{{Ref|Ma}}|| P. Mattila, "Geometry of sets and measures in euclidean spaces.  Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge,  1995. {{MR|1333890}} {{ZBL|0911.28005}}
 +
|-
 
|}
 
|}

Revision as of 11:40, 21 July 2012

2020 Mathematics Subject Classification: Primary: 28A33 [MSN][ZBL]

A concept in measure theory, determined by a certain topology in a space of measures that are defined on a certain $\sigma$-algebra $\mathcal{B}$ of subsets of a space $X$ or, more generally, in a space $\mathcal{M} (X, \mathcal{B})$ of charges, i.e. countably-additive real (resp. complex) functions $\mu: \mathcal{B}\mapsto \mathbb R$ (resp. $\mathbb C$), often called also $\mathbb R$(resp. $\mathbb C$)-valued or signed measures. The total variation measure of a $\mathbb C$-valued measure is defined on $\mathcal{B}$ as: \[ |\mu| (B) :=\sup\, \left\{ \sum |\mu (B_i)|: \{B_i\}\subset \mathcal{B} \mbox{ is a countable partition of '"`UNIQ-MathJax11-QINU`"'}\right\}\, . \] In the real-valued case the above definition simplies as \[ |\mu| (B) = \sup_{A\in \mathcal{B}, A\subset B}\, \left(|\mu (A)| + |\mu (X\setminus B)|\right)\, . \] The total variation of $\mu$ is then defined as $\|\mu\|_v := |\mu| (X)$. The space $\mathcal{M}^b (X, \mathcal{B})$ of $\mathbb R$(resp. $\mathbb C$)-valued measure with finite total variation is a Banach space and the following are the most commonly used topologies.

1) The norm or strong topology: $\mu_n\to \mu$ if and only if $\|\mu_n-\mu\|_v\to 0$.

2) The weak topology: a sequence of measures $\mu_n \rightharpoonup \mu$ if and only if $F (\mu_n)\to F(\mu)$ for every bounded linear functional $F$ on $\mathcal{M}^b$.

3) When $X$ is a topological space and $\mathcal{B}$ the corresponding $\sigma$-algebra of Borel sets, we can introduce on $X$ the narrow topology. In this case $\mu_n$ converges to $\mu$ if and only if \begin{equation}\label{e:narrow} \int f\, d\mu_n \to \int f\, d\mu \end{equation} for every bounded continuous function $f:X\to \mathbb R$(resp. $\mathbb C$). This topology is also called sometimes weak topology, however such notation is inconsistent with the Banach space theory, see below. The following is an important consequence of the narrow convergence: if $\mu_n$ converges narrowly to $\mu$, then $\mu_n (A)\to \mu (A)$ for any Borel set such that $|\mu| (\partial A)=0$.

4) When $X$ is a locally compact topological space and $\mathcal{B}$ the $\sigma$-algebra of Borel sets yet another topology can be introduced, the so-called wide topology, or sometimes referred to as weak$^\star$ topology. A sequence $\mu_n\rightharpoonup^\star \mu$ if and only if \eqref{e:narrow} holds for continuous functions which are compactly supported.

This topology is in general weaker than the narrow topology. If $X$ is compact and Hausdorff the Riesz representation theorem shows that $\mathcal{M}^b$ is the dual of the space $C(X)$ of continuous functions. Under this assumption the narrow and weak$^\star$ topology coincide with the usual weak$^\star$ topology of the Banach space theory. Since in general $C(X)$ is not a reflexive space, it turns out that the narrow topology is in general weaker than the weak topology.

A topology analogous to the weak$^\star$ topology is defined in the more general space $\mathcal{M}^b_{loc}$ of locally bounded measures, i.e. those measures $\mu$ such that for any point $x\in X$ there is a neighborhood $U$ with $|\mu| (U)<\infty$.

http://www.encyclopediaofmath.org/index.php/Convergence_of_measures

References

[AmFuPa] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems".

Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292{{ZBL|0957.49001}

[Bo] N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001
[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523
[Bi] P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201
[Ma] P. Mattila, "Geometry of sets and measures in euclidean spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005
How to Cite This Entry:
Convergence of measures. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Convergence_of_measures&oldid=26396
This article was adapted from an original article by R.A. Minlos (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article