Namespaces
Variants
Actions

Difference between revisions of "Complex"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241001.png" /> of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241002.png" /> that is partially ordered by a reflexive regular transitive relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241003.png" />, together with an integer-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241004.png" />, called the dimension of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241005.png" />, and a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241006.png" />, called the incidence coefficient of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241007.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241008.png" />, satisfying the conditions: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c0241009.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410010.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410011.png" />; 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410012.png" /> implies that either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410013.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410014.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410015.png" />; and 4) for any pair of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410016.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410017.png" /> the dimensions of which differ by two, there exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410018.png" /> at most a finite number of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410019.png" /> such that
+
<!--
 +
c0241001.png
 +
$#A+1 = 472 n = 0
 +
$#C+1 = 472 : ~/encyclopedia/old_files/data/C024/C.0204100 Complex
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410020.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A set  $  K = \{ t \} $
 +
of elements  $  t $
 +
that is partially ordered by a reflexive regular transitive relation  $  < $,
 +
together with an integer-valued function  $  \mathop{\rm dim}  t $,
 +
called the dimension of the element  $  t $,
 +
and a number  $  [ t :  t  ^  \prime  ] $,
 +
called the incidence coefficient of the elements  $  t $
 +
and  $  t  ^  \prime  $,
 +
satisfying the conditions: 1)  $  t  ^  \prime  < t $
 +
implies  $  \mathop{\rm dim}  t  ^  \prime  < \mathop{\rm dim}  t $;
 +
2)  $  [ t :  t  ^  \prime  ] = [ t  ^  \prime  : t ] $;  
 +
3)  $  [ t : t  ^  \prime  ] \neq 0 $
 +
implies that either  $  t  ^  \prime  < t $
 +
or  $  t < t  ^  \prime  $,
 +
and that  $  |  \mathop{\rm dim}  t -  \mathop{\rm dim}  t  ^  \prime  | = 1 $;
 +
and 4) for any pair of elements  $  t , t  ^ {\prime\prime} $
 +
in  $  K $
 +
the dimensions of which differ by two, there exists in  $  K $
 +
at most a finite number of elements  $  t  ^  \prime  $
 +
such that
 +
 
 +
$$
 +
[ t :  t  ^  \prime  ]
 +
[ t  ^  \prime  :  t  ^ {\prime\prime} ]
 +
\neq  0,\ \
 +
$$
  
 
and, moreover,
 
and, moreover,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410021.png" /></td> </tr></table>
+
$$
 +
\sum _ {t  ^  \prime  }
 +
[ t : t  ^  \prime  ]
 +
[ t  ^  \prime  : t  ^ {\prime\prime} ]  = 0 .
 +
$$
  
On replacing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410022.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410024.png" /> is a function with values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410025.png" />, one obtains a complex that can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410026.png" />; in other words, the incidences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410027.png" /> are determined up to factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410028.png" />; transition from one value to the other is called a change of orientation of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410029.png" />; the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410030.png" /> preserves or changes its orientation according to whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410031.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410032.png" />, respectively.
+
On replacing $  [ t : t  ^  \prime  ] $
 +
by $  \alpha ( t) \alpha ( t  ^  \prime  ) [ t : t  ^  \prime  ] $,  
 +
where $  \alpha ( t) $
 +
is a function with values $  \pm  1 $,  
 +
one obtains a complex that can be identified with $  K $;  
 +
in other words, the incidences $  [ t : t  ^  \prime  ] $
 +
are determined up to factors $  \alpha ( t) \alpha ( t  ^  \prime  ) $;  
 +
transition from one value to the other is called a change of orientation of the complex $  K $;  
 +
the element $  t $
 +
preserves or changes its orientation according to whether $  \alpha ( t) = + 1 $
 +
or $  - 1 $,  
 +
respectively.
  
A complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410033.png" /> is called finite dimensional, more precisely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410034.png" />-dimensional, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410035.png" /> is the maximum dimension of the elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410036.png" />; if there is no element of the maximum dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410037.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410038.png" /> is called infinite dimensional. The star of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410039.png" /> in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410040.png" /> is the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410041.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410042.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410043.png" />. The closure of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410044.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410045.png" /> is the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410046.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410047.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410048.png" />. The boundary of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410049.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410050.png" /> is the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410051.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410052.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410054.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410055.png" /> is called a face of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410056.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410057.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410058.png" />; a face <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410059.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410060.png" /> is called a proper face if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410061.png" />. Two elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410063.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410064.png" /> are said to be incident if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410065.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410066.png" />. A complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410067.png" /> is called finite if the set of its elements is finite. A complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410068.png" /> is called star-finite (respectively, closure-finite) if the star (respectively, the closure) of each of its elements consists of a finite number of elements. A complex is said to be locally finite if it is star-finite and closure-finite.
+
A complex $  K $
 +
is called finite dimensional, more precisely, $  n $-
 +
dimensional, if $  n $
 +
is the maximum dimension of the elements in $  K $;  
 +
if there is no element of the maximum dimension $  k $,  
 +
then $  K $
 +
is called infinite dimensional. The star of an element $  t $
 +
in the complex $  K $
 +
is the set of all elements $  t  ^  \prime  $
 +
in $  K $
 +
such that $  t  ^  \prime  > t $.  
 +
The closure of an element $  t $
 +
in $  K $
 +
is the set of all elements $  t  ^  \prime  $
 +
in $  K $
 +
such that $  t  ^  \prime  < t $.  
 +
The boundary of an element $  t $
 +
in $  K $
 +
is the set of all elements $  t  ^  \prime  $
 +
in $  K $
 +
such that $  t  ^  \prime  < t $
 +
and $  t  ^  \prime  \neq t $.  
 +
An element $  t  ^  \prime  $
 +
is called a face of an element $  t $
 +
in $  K $
 +
if $  t  ^  \prime  < t $;  
 +
a face $  t  ^  \prime  $
 +
of $  t $
 +
is called a proper face if $  t  ^  \prime  \neq t $.  
 +
Two elements $  t $
 +
and $  t  ^  \prime  $
 +
in $  K $
 +
are said to be incident if $  t  ^  \prime  < t $
 +
or $  t < t  ^  \prime  $.  
 +
A complex $  K $
 +
is called finite if the set of its elements is finite. A complex $  K $
 +
is called star-finite (respectively, closure-finite) if the star (respectively, the closure) of each of its elements consists of a finite number of elements. A complex is said to be locally finite if it is star-finite and closure-finite.
  
A subcomplex of a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410069.png" /> is any subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410070.png" /> that is a complex under the same dimensions and incidence coefficients as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410071.png" />. A subcomplex is closed closed if it contains the closure of each of its elements, and open if it contains the star of each of its elements. The complement of a closed complex is an open complex, and conversely. The star of each element of any complex is an open subcomplex, while the closure and boundary are closed subcomplexes. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410073.png" />-dimensional skeleton, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410075.png" />-skeleton, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410076.png" /> of a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410077.png" /> is the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410078.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410079.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410080.png" />; it is a closed subcomplex.
+
A subcomplex of a complex $  K $
 +
is any subset of $  K $
 +
that is a complex under the same dimensions and incidence coefficients as $  K $.  
 +
A subcomplex is closed closed if it contains the closure of each of its elements, and open if it contains the star of each of its elements. The complement of a closed complex is an open complex, and conversely. The star of each element of any complex is an open subcomplex, while the closure and boundary are closed subcomplexes. The $  r $-
 +
dimensional skeleton, or $  r $-
 +
skeleton, $  K  ^ {r} $
 +
of a complex $  K $
 +
is the set of all elements $  t $
 +
in $  K $
 +
for which $  \mathop{\rm dim}  t \leq  r $;  
 +
it is a closed subcomplex.
  
Two complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410081.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410082.png" /> are said to be isomorphic if there is a bijective mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410083.png" /> of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410084.png" /> to the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410085.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410087.png" />.
+
Two complexes $  K = \{ t \} $
 +
and $  L $
 +
are said to be isomorphic if there is a bijective mapping $  f $
 +
of the set $  K $
 +
to the set $  L $
 +
such that $  \mathop{\rm dim}  f ( t) = \mathop{\rm dim}  t $
 +
and  $  [ t : t  ^  \prime  ] = [ f ( t) : f ( t  ^  \prime  ) ] $.
  
 
The most important type of complex is a simplicial complex, of which there exist two kinds: an abstract complex and a geometric complex.
 
The most important type of complex is a simplicial complex, of which there exist two kinds: an abstract complex and a geometric complex.
  
An abstract simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410088.png" /> has for its elements abstract simplices (simplexes) of different dimensions. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410089.png" />-dimensional simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410090.png" /> is a set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410091.png" /> objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410092.png" />. These objects, that is, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410093.png" />-dimensional simplices, are called the vertices of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410094.png" />. A simplex is oriented if its vertex set is ordered, where orderings that differ by an even permutation determine the same orientation. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410096.png" />-dimensional faces of a simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410097.png" /> are the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410098.png" />-dimensional simplices the vertices of which are contained among those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c02410099.png" />. A simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100100.png" /> contains all faces of each of its simplices. The relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100101.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100102.png" /> is a face of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100103.png" />. The faces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100105.png" /> are called opposite faces of the simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100106.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100107.png" /> is the face of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100108.png" /> opposite to the vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100109.png" />, then
+
An abstract simplicial complex $  K $
 +
has for its elements abstract simplices (simplexes) of different dimensions. An $  r $-
 +
dimensional simplex $  t  ^ {r} $
 +
is a set of $  r + 1 $
 +
objects $  a  ^ {0} \dots a  ^ {r} $.  
 +
These objects, that is, the 0 $-
 +
dimensional simplices, are called the vertices of the complex $  K $.  
 +
A simplex is oriented if its vertex set is ordered, where orderings that differ by an [[even permutation]] determine the same orientation. The $  s $-
 +
dimensional faces of a simplex $  t  ^ {r} $
 +
are the $  s $-
 +
dimensional simplices the vertices of which are contained among those of $  t  ^ {r} $.  
 +
A simplicial complex $  K $
 +
contains all faces of each of its simplices. The relation $  t  ^ {s} < t  ^ {r} $
 +
means that $  t  ^ {s} $
 +
is a face of $  t  ^ {r} $.  
 +
The faces $  ( a  ^ {0} \dots a  ^ {s} ) $
 +
and $  ( a  ^ {s+} 1 \dots a  ^ {r} ) $
 +
are called opposite faces of the simplex $  t  ^ {r} $.  
 +
If $  t  ^ {r-} 1 $
 +
is the face of $  t  ^ {r} $
 +
opposite to the vertex $  a  ^ {i} $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100110.png" /></td> </tr></table>
+
$$
 +
[ t  ^ {r-} 1 : t  ^ {r} ]  = \
 +
[ t  ^ {r} : t  ^ {r-} 1 ]  = \
 +
\pm  1 ,
 +
$$
  
according to whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100111.png" /> has the same orientation as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100112.png" /> or not. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100113.png" /> is not a face of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100114.png" />, then
+
according to whether $  t  ^ {r} $
 +
has the same orientation as $  a  ^ {i} t  ^ {r-} 1 $
 +
or not. If $  t  ^ {r-} 1 $
 +
is not a face of $  t  ^ {r} $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100115.png" /></td> </tr></table>
+
$$
 +
[ t  ^ {r-} 1 : t  ^ {r} ]  = \
 +
[ t  ^ {r} : t  ^ {r-} 1 ]  = 0 .
 +
$$
  
By giving an orientation to each simplex of a simplicial complex one obtains an oriented complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100116.png" />.
+
By giving an orientation to each simplex of a simplicial complex one obtains an oriented complex $  K $.
  
 
An abstract simplicial complex is defined if the set of its vertices is known as well as the system, called a scheme, of all those finite subsets of this set that are to be taken as the simplices; here it is required that each vertex belongs to at least one element of the system and that each subset of an element belonging to the system also belongs to the system. Dimension, orientation, etc., are defined as before.
 
An abstract simplicial complex is defined if the set of its vertices is known as well as the system, called a scheme, of all those finite subsets of this set that are to be taken as the simplices; here it is required that each vertex belongs to at least one element of the system and that each subset of an element belonging to the system also belongs to the system. Dimension, orientation, etc., are defined as before.
  
A polyhedral (cellular) complex of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100117.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100118.png" /> is a countable locally finite complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100119.png" /> the elements of which are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100120.png" />-dimensional cells <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100121.png" />, i.e. bounded convex open subsets of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100122.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100123.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100124.png" />, where the cells are pairwise disjoint, the union of the cells belonging to the closure of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100125.png" /> is the topological closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100126.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100127.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100128.png" />, and the topological closure of the union of the cells not belonging to the star of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100129.png" /> does not intersect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100130.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100131.png" /> means that either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100132.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100133.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100134.png" /> is defined by the incidence coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100135.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100136.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100137.png" /> are the two regions into which the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100138.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100139.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100140.png" />. The union of the cells of the polyhedral complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100141.png" /> obtained in this manner with the topology induced from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100142.png" /> is called a polyhedron and is usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100143.png" />. A special form of a polyhedral complex is a Euclidean geometric simplicial complex, the elements of which are Euclidean simplices in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100144.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100146.png" />-dimensional Euclidean simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100147.png" /> consists of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100148.png" />, defined by the relations
+
A polyhedral (cellular) complex of an $  n $-
 +
dimensional Euclidean space $  E  ^ {n} $
 +
is a countable locally finite complex $  K $
 +
the elements of which are $  r $-
 +
dimensional cells $  t  ^ {r} $,  
 +
i.e. bounded convex open subsets of some $  E  ^ {r} $
 +
in $  E  ^ {n} $,  
 +
0 \leq  r \leq  n $,  
 +
where the cells are pairwise disjoint, the union of the cells belonging to the closure of the element $  t  ^ {r} $
 +
is the topological closure $  \overline{t}\; {}  ^ {r} $
 +
of $  t  ^ {r} $
 +
in $  E  ^ {r} $,  
 +
and the topological closure of the union of the cells not belonging to the star of $  t  ^ {r} $
 +
does not intersect $  t  ^ {r} $.  
 +
Here $  t  ^ {r} < t  ^ {s} $
 +
means that either $  t  ^ {r} = t  ^ {s} $
 +
or $  t  ^ {r} \subset  \overline{t}\; {}  ^ {s} \setminus  t  ^ {s} $,  
 +
and $  [ t  ^ {r-} 1 : t  ^ {r} ] $
 +
is defined by the incidence coefficients $  [ E _ {1}  ^ {r-} 1 :  E  ^ {r} ] = - [ E _ {2}  ^ {r-} 1 : E  ^ {r} ] $,  
 +
where $  E _ {1}  ^ {r-} 1 $
 +
and $  E _ {2}  ^ {r-} 1 $
 +
are the two regions into which the space $  E  ^ {r-} 1 $
 +
containing $  t  ^ {r-} 1 $
 +
divides $  E  ^ {r} $.  
 +
The union of the cells of the polyhedral complex $  K $
 +
obtained in this manner with the topology induced from $  E  ^ {n} $
 +
is called a polyhedron and is usually denoted by $  | K | $.  
 +
A special form of a polyhedral complex is a Euclidean geometric simplicial complex, the elements of which are Euclidean simplices in $  E  ^ {n} $.  
 +
An $  r $-
 +
dimensional Euclidean simplex $  t  ^ {r} $
 +
consists of points $  x = ( x _ {1} \dots x _ {n} ) \in E  ^ {n} $,  
 +
defined by the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100149.png" /></td> </tr></table>
+
$$
 +
x _ {k}  = \
 +
\sum _ { i= } 0 ^ { r }
 +
\lambda  ^ {i} a _ {k}  ^ {i} ,\ \
 +
k = 1 \dots n ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100150.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100151.png" />, are independent points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100152.png" /> (i.e. they are not contained in any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100153.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100154.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100155.png" />,
+
where $  a  ^ {i} = ( a _ {1}  ^ {i} \dots a _ {n}  ^ {i} ) $,  
 +
$  i = 0 \dots r $,  
 +
are independent points of $  E  ^ {n} $(
 +
i.e. they are not contained in any $  E  ^ {r-} 1 $
 +
of $  E  ^ {n} $),  
 +
$  0 < \lambda  ^ {i} < 1 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100156.png" /></td> </tr></table>
+
$$
 +
\sum _ { i= } 0 ^ { r }
 +
\lambda  ^ {i}  = 1 \ \
 +
( \textrm{ if }  r = 0 ,\
 +
x = a  ^ {0} ) ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100157.png" /> are called the vertices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100158.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100159.png" /> are the barycentric coordinates of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100160.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100161.png" /> is called the geometric simplex formed by the abstract simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100162.png" />.
+
$  a  ^ {i} $
 +
are called the vertices of $  t  ^ {r} $,  
 +
$  \lambda  ^ {i} $
 +
are the barycentric coordinates of the point $  x $,  
 +
and $  t  ^ {r} $
 +
is called the geometric simplex formed by the abstract simplex $  ( a  ^ {0} \dots a  ^ {r} ) $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100163.png" /> be a countable locally finite abstract simplicial complex with vertices in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100164.png" />, where any vertices forming a simplex are independent, any two simplexes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100165.png" /> having no vertices in common generate disjoint geometric complexes, and the closure of the union of all those geometric simplices that are generated by simplices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100166.png" /> and which do not belong to some generated simplex does not intersect the latter. The notions of dimension, order, incidence, etc., are carried over from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100167.png" /> to the set of generated geometric simplices; this turns this set into a polyhedral complex, called a Euclidean realization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100168.png" />.
+
Let $  K $
 +
be a countable locally finite abstract simplicial complex with vertices in $  E  ^ {n} $,  
 +
where any vertices forming a simplex are independent, any two simplexes of $  K $
 +
having no vertices in common generate disjoint geometric complexes, and the closure of the union of all those geometric simplices that are generated by simplices of $  K $
 +
and which do not belong to some generated simplex does not intersect the latter. The notions of dimension, order, incidence, etc., are carried over from $  K $
 +
to the set of generated geometric simplices; this turns this set into a polyhedral complex, called a Euclidean realization of $  K $.
  
A geometric realization, not necessarily Euclidean, is also possible for any abstract simplicial complex. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100169.png" /> be the family of vertices of an arbitrary abstract simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100170.png" /> labelled by indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100171.png" /> in a totally well-ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100172.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100173.png" /> be the set of all systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100174.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100175.png" />, of non-negative real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100176.png" /> such that the vertices corresponding to non-zero coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100177.png" /> of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100178.png" /> form a simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100179.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100180.png" /> (the number of such coordinates is finite), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100181.png" />. The simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100182.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100183.png" /> is put in correspondence with the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100184.png" /> of all systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100185.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100186.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100187.png" /> is one of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100188.png" />; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100189.png" /> is the union of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100190.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100191.png" /> be homeomorphically imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100192.png" />: Corresponding to the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100193.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100194.png" /> is the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100195.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100196.png" />. This introduces a topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100197.png" /> and in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100198.png" />: A set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100199.png" /> is taken to be open if its intersection with each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100200.png" /> is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100201.png" />. The polyhedron <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100202.png" /> is called a geometric realization of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100203.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100204.png" /> is called a triangulation of the polyhedron <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100205.png" />. A simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100206.png" /> is finite (respectively, locally finite) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100207.png" /> is a compact (respectively, locally compact) space. Local finiteness of a simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100208.png" /> is also a necessary and sufficient condition for the metrizability of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100209.png" />, where the metric is defined by the formula
+
A geometric realization, not necessarily Euclidean, is also possible for any abstract simplicial complex. Let $  \{ a  ^ {i} \} $
 +
be the family of vertices of an arbitrary abstract simplicial complex $  K $
 +
labelled by indices $  i $
 +
in a totally well-ordered set $  I $,  
 +
let $  | K | $
 +
be the set of all systems $  \{ \lambda _ {i} \} $,  
 +
$  i \in I $,  
 +
of non-negative real numbers $  \lambda _ {i} $
 +
such that the vertices corresponding to non-zero coordinates $  \lambda _ {i _ {0}  } \dots \lambda _ {i _ {r}  } $
 +
of the system $  \{ \lambda _ {i} \} $
 +
form a simplex $  ( a ^ {i _ {0} } \dots a ^ {i _ {r} }) $
 +
in $  K $(
 +
the number of such coordinates is finite), and let $  \sum _ {i} \lambda _ {i} = 1 $.  
 +
The simplex $  t  ^ {r} = ( a ^ {i _ {0} } \dots a ^ {i _ {r} } ) $
 +
in $  K $
 +
is put in correspondence with the set $  | t  ^ {r} | $
 +
of all systems $  \{ \lambda _ {i} \} $
 +
such that $  \lambda _ {i} \neq 0 $
 +
if and only if $  i $
 +
is one of the $  i _ {0} \dots i _ {r} $;  
 +
then $  | K | $
 +
is the union of the sets $  | t  ^ {r} | $.  
 +
Let $  | t  ^ {r} | $
 +
be homeomorphically imbedded in $  E  ^ {r+} 1 $:  
 +
Corresponding to the point $  \{ \lambda _ {i} \} $
 +
in $  | t  ^ {r} | $
 +
is the point $  \{ \lambda _ {i _ {0}  } \dots \lambda _ {i _ {r}  } \} $
 +
in $  E  ^ {r+} 1 $.  
 +
This introduces a topology in $  | t  ^ {r} | $
 +
and in $  | K | $:  
 +
A set in $  | K | $
 +
is taken to be open if its intersection with each $  | t  ^ {r} | $
 +
is open in $  | t  ^ {r} | $.  
 +
The polyhedron $  | K | $
 +
is called a geometric realization of the complex $  K $,  
 +
and $  K $
 +
is called a triangulation of the polyhedron $  | K | $.  
 +
A simplicial complex $  K $
 +
is finite (respectively, locally finite) if and only if $  | K | $
 +
is a compact (respectively, locally compact) space. Local finiteness of a simplicial complex $  K $
 +
is also a necessary and sufficient condition for the metrizability of $  | K | $,  
 +
where the metric is defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100210.png" /></td> </tr></table>
+
$$
 +
\rho ( \{ \lambda _ {i} \} ,\
 +
\{ \mu _ {i} \} )  = \
 +
\sqrt {\sum _ { i }
 +
( \lambda _ {i} -
 +
\mu _ {i} )  ^ {2} } .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100211.png" /> is a countable locally finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100212.png" />-dimensional complex, then it can be realized in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100213.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100214.png" />. A complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100215.png" /> is realizable in a Hilbert space if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100216.png" /> can be homeomorphically imbedded in this space such that every closed simplex in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100217.png" /> has a Euclidean realization; this is possible if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100218.png" /> is a countable locally finite simplicial complex.
+
If $  K $
 +
is a countable locally finite $  n $-
 +
dimensional complex, then it can be realized in the $  ( 2 n + 1 ) $-
 +
dimensional Euclidean space $  E  ^ {2n+} 1 $.  
 +
A complex $  K $
 +
is realizable in a Hilbert space if $  | K | $
 +
can be homeomorphically imbedded in this space such that every closed simplex in $  | K | $
 +
has a Euclidean realization; this is possible if and only if $  K $
 +
is a countable locally finite simplicial complex.
  
 
A finite geometric complex is a set of open geometric simplices that contains all the faces of each of the simplices and is such that the intersection of different simplices is empty. When studying closed simplices the second condition is replaced by the requirement that the intersection of two closed simplices be empty or a closed face of these simplices.
 
A finite geometric complex is a set of open geometric simplices that contains all the faces of each of the simplices and is such that the intersection of different simplices is empty. When studying closed simplices the second condition is replaced by the requirement that the intersection of two closed simplices be empty or a closed face of these simplices.
Line 51: Line 296:
 
The notion of a complex finds its greatest application in homology theory. The use of simplicial complexes in the calculation of topological invariants of polyhedra is complicated by the fact that under triangulation of a polyhedron one may have to use many simplices. In this respect the [[CW-complex|CW-complex]] is preferable: in the latter the number of cells can be considerably fewer than the number of simplices in an arbitrary simplicial subdivision of the polyhedron. On the other hand, the simplicial complexes and triangulations have their advantages too. For example, in the simplicial approximation of a continuous mapping, in the composition and application of incidence matrices, in the use of complexes for the homological investigation of general topological spaces, etc.
 
The notion of a complex finds its greatest application in homology theory. The use of simplicial complexes in the calculation of topological invariants of polyhedra is complicated by the fact that under triangulation of a polyhedron one may have to use many simplices. In this respect the [[CW-complex|CW-complex]] is preferable: in the latter the number of cells can be considerably fewer than the number of simplices in an arbitrary simplicial subdivision of the polyhedron. On the other hand, the simplicial complexes and triangulations have their advantages too. For example, in the simplicial approximation of a continuous mapping, in the composition and application of incidence matrices, in the use of complexes for the homological investigation of general topological spaces, etc.
  
A simplicial mapping from a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100219.png" /> to a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100220.png" /> is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100221.png" /> that sets up a correspondence between each vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100222.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100223.png" /> and a vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100224.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100225.png" />, such that whenever some vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100226.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100227.png" /> form a simplex in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100228.png" />, then the vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100229.png" />, some of which may be coincident, must also form simplex in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100230.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100231.png" /> associates with each simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100232.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100233.png" /> a simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100234.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100235.png" />. A simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100236.png" /> of a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100237.png" /> into a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100238.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100239.png" /> are closed subcomplexes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100240.png" />, respectively, is a simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100241.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100242.png" />. The set of all simplicial complexes and their simplicial mappings forms a category, as does the set of all simplicial pairs and all their simplicial mappings.
+
A simplicial mapping from a complex $  K $
 +
to a complex $  L $
 +
is a function $  f : K \rightarrow L $
 +
that sets up a correspondence between each vertex $  a $
 +
of $  K $
 +
and a vertex $  f ( a) $
 +
of $  L $,  
 +
such that whenever some vertices $  a ^ {i _ {0} } \dots a ^ {i _ {r} } $
 +
of $  K $
 +
form a simplex in $  K $,  
 +
then the vertices $  f ( a ^ {i _ {0} } ) \dots f ( a ^ {i _ {r} } ) $,  
 +
some of which may be coincident, must also form simplex in $  L $.  
 +
The function $  f $
 +
associates with each simplex $  t  ^ {r} $
 +
of $  K $
 +
a simplex $  t  ^ {s} = f ( t  ^ {r} ) $
 +
of $  L $.  
 +
A simplicial mapping $  f : ( K , L ) \rightarrow ( K ^ { \prime } , L  ^  \prime  ) $
 +
of a pair $  ( K , L ) $
 +
into a pair $  ( K ^ { \prime } , L  ^  \prime  ) $,  
 +
where $  L , L  ^  \prime  $
 +
are closed subcomplexes of $  K , K ^ { \prime } $,  
 +
respectively, is a simplicial mapping $  f : K \rightarrow K ^ { \prime } $
 +
such that $  f ( L) \subset  L  ^  \prime  $.  
 +
The set of all simplicial complexes and their simplicial mappings forms a category, as does the set of all simplicial pairs and all their simplicial mappings.
  
The homology of a complex, which, to begin with, was expressed by numerical invariants, subsequently came to be represented by algebraic means such as groups, modules, sheaves, etc. The scheme of their construction is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100243.png" /> be an arbitrary complex and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100244.png" /> be an Abelian group; an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100246.png" />-dimensional chain complex (generally infinite) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100247.png" /> over the group of coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100248.png" /> is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100249.png" /> with domain the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100250.png" />-dimensional elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100251.png" /> and with range <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100252.png" />. The collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100253.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100254.png" />-dimensional chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100255.png" /> of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100256.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100257.png" />, forms a group with respect to the operation of addition
+
The homology of a complex, which, to begin with, was expressed by numerical invariants, subsequently came to be represented by algebraic means such as groups, modules, sheaves, etc. The scheme of their construction is as follows. Let $  K $
 +
be an arbitrary complex and let $  G $
 +
be an Abelian group; an $  r $-
 +
dimensional chain complex (generally infinite) $  K $
 +
over the group of coefficients $  G $
 +
is a function c _ {r} $
 +
with domain the set of all $  r $-
 +
dimensional elements of $  K $
 +
and with range $  G $.  
 +
The collection $  \{ c _ {r} \} $
 +
of all $  r $-
 +
dimensional chains c _ {r} $
 +
of the complex $  K $,  
 +
denoted by $  C _ {r} ( K ;  G ) $,  
 +
forms a group with respect to the operation of addition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100258.png" /></td> </tr></table>
+
$$
 +
( c _ {r} + c _ {r}  ^  \prime  )
 +
( t  ^ {r} )  = c _ {r} ( t  ^ {r} ) + c _ {r}  ^  \prime
 +
( t  ^ {r} ) ,\  c _ {r} ,\
 +
c _ {r}  ^  \prime  \in C _ {r} ( K ; G ) ,\  t \in K .
 +
$$
  
It is called the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100260.png" />-dimensional chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100261.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100262.png" /> (or over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100263.png" />). Under the hypothesis that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100264.png" /> is a star-finite complex, one can introduce on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100265.png" /> a boundary operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100266.png" /> by means of the formula
+
It is called the group of $  r $-
 +
dimensional chains of $  K $
 +
with coefficients in $  G $(
 +
or over $  G $).  
 +
Under the hypothesis that $  K $
 +
is a star-finite complex, one can introduce on $  C _ {r} ( K ;  G ) $
 +
a boundary operator $  \partial  _ {r} $
 +
by means of the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100267.png" /></td> </tr></table>
+
$$
 +
\partial  c _ {r}  = \sum _ { j }
 +
\left ( \sum _ { i } c _ {r} ( t _ {i}  ^ {r} ) [ t _ {i}  ^ {r} : t _ {j}  ^ {r-} 1 ] \right )
 +
t _ {j}  ^ {r-} 1 ,
 +
$$
  
 
which defines a homomorphism
 
which defines a homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100268.png" /></td> </tr></table>
+
$$
 +
\partial  _ {r} : C _ {r} ( K ; G )  \rightarrow  C _ {r-} 1
 +
( K ; G ) .
 +
$$
  
Because the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100269.png" /> holds, one obtains a chain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100270.png" />, whose homology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100271.png" /> (i.e. the quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100272.png" /> by the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100273.png" />) is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100274.png" />-dimensional homology group of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100275.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100276.png" />. (The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png" /> is often denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100278.png" /> and is called the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100279.png" />-dimensional cycles of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100280.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100281.png" />, while the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100282.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100283.png" /> and is called the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100284.png" />-dimensional boundaries of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100285.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100286.png" />.)
+
Because the equation $  \partial  _ {r-} 1 \partial  _ {r} = 0 $
 +
holds, one obtains a chain complex $  \{ C _ {r} ( K ;  G ) , \partial  _ {r} \} $,  
 +
whose homology group $  H _ {r} ( K ;  G ) $(
 +
i.e. the quotient group of $  \mathop{\rm Ker}  \partial  _ {r} $
 +
by the subgroup $  \mathop{\rm Im}  \partial  _ {r+} 1 $)  
 +
is called the $  r $-
 +
dimensional homology group of the complex $  K $
 +
with coefficients in $  G $.  
 +
(The group $  \mathop{\rm Ker}  \partial  _ {r} $
 +
is often denoted by $  Z _ {r} ( K ;  G ) $
 +
and is called the group of $  r $-
 +
dimensional cycles of the complex $  K $
 +
with coefficients in $  G $,  
 +
while the group $  \mathop{\rm Im}  \partial  _ {r+} 1 $
 +
is denoted by $  B _ {r} ( K ;  G ) $
 +
and is called the group of $  r $-
 +
dimensional boundaries of the complex $  K $
 +
with coefficients in $  G $.)
  
As well as homology groups, cohomology groups are also defined for a complex. For their definition, one starts again with a group of chains, called in this case the group of cochains, and denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100287.png" />. The complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100288.png" /> is here assumed to be closed-finite, while the coboundary operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100289.png" /> is defined by the formula
+
As well as homology groups, cohomology groups are also defined for a complex. For their definition, one starts again with a group of chains, called in this case the group of cochains, and denoted by $  C  ^ {r} ( K ;  G ) $.  
 +
The complex $  K $
 +
is here assumed to be closed-finite, while the coboundary operator $  \partial  ^ {r} $
 +
is defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100290.png" /></td> </tr></table>
+
$$
 +
\delta  ^ {r} c  ^ {r}  = \
 +
\sum _ { j } \left ( \sum _ { i }
 +
c  ^ {r} ( t _ {i}  ^ {r} )
 +
[ t _ {i}  ^ {r} : t _ {j}  ^ {r+} 1 ] \right ) t _ {j}  ^ {r+} 1 ,
 +
$$
  
 
defining a homomorphism
 
defining a homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100291.png" /></td> </tr></table>
+
$$
 +
\delta  ^ {r} : C  ^ {r}
 +
( K ; G )  \rightarrow  C  ^ {r+} 1
 +
( K ; G ) .
 +
$$
  
For this cochain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100292.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100293.png" />, the cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100294.png" />, i.e. the quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100295.png" /> by the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100296.png" />, is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100298.png" />-dimensional cohomology group of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100299.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100300.png" />. (The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100301.png" /> is usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100302.png" /> and is called the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100303.png" />-dimensional cocycles of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100304.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100305.png" />, while the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100306.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100307.png" /> and is called the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100308.png" />-dimensional coboundaries of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100309.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100310.png" />.)
+
For this cochain complex $  \{ C  ^ {r} ( K ;  G ) , \delta  ^ {r} \} $,  
 +
$  \delta  ^ {r+} 1 \delta  ^ {r} = 0 $,  
 +
the cohomology group $  H  ^ {r} ( k ;  G ) $,  
 +
i.e. the quotient group of $  \mathop{\rm Ker}  \delta  ^ {r} $
 +
by the subgroup $  \mathop{\rm Im}  \delta  ^ {r-} 1 $,  
 +
is called the $  r $-
 +
dimensional cohomology group of the complex $  K $
 +
with coefficients in $  G $.  
 +
(The group $  \mathop{\rm Ker}  \delta  ^ {r} $
 +
is usually denoted by $  Z  ^ {r} ( K ;  G ) $
 +
and is called the group of $  r $-
 +
dimensional cocycles of the complex $  K $
 +
with coefficients in $  G $,  
 +
while the group $  \mathop{\rm Im}  \delta  ^ {r-} 1 $
 +
is denoted by $  B  ^ {r} ( K ;  G ) $
 +
and is called the group of $  r $-
 +
dimensional coboundaries of the complex $  K $
 +
with coefficients in $  G $.)
  
 
Star- (or closed-) finiteness of the complex is required in order that the summation in the definition of the boundary (or coboundary) operator be finite. In the case of a star-finite complex one can define the homology groups of arbitrary (infinite) cycles and the cohomology groups of finite cocycles. In the case of a closed-finite complex one can define the homology groups of infinite cocycles and the homology groups of finite cycles. In the case of a locally finite complex, one can define both finite and infinite homology and cohomology groups. If the complex is arbitrary, then its homology (respectively, cohomology) groups are defined as the direct (respectively, inverse) limit of the spectrum of the homology (respectively, cohomology) groups of all locally finite subcomplexes of the given complex, ordered by increasing size.
 
Star- (or closed-) finiteness of the complex is required in order that the summation in the definition of the boundary (or coboundary) operator be finite. In the case of a star-finite complex one can define the homology groups of arbitrary (infinite) cycles and the cohomology groups of finite cocycles. In the case of a closed-finite complex one can define the homology groups of infinite cocycles and the homology groups of finite cycles. In the case of a locally finite complex, one can define both finite and infinite homology and cohomology groups. If the complex is arbitrary, then its homology (respectively, cohomology) groups are defined as the direct (respectively, inverse) limit of the spectrum of the homology (respectively, cohomology) groups of all locally finite subcomplexes of the given complex, ordered by increasing size.
  
In the study of homology and cohomology groups of a complex one can consider the category of simplicial pairs of complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100311.png" /> and simplicial mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100312.png" /> between them, and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100313.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100314.png" />-dimensional finite chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100315.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100316.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100317.png" />, this being the quotient group of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100318.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100319.png" />-dimensional chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100320.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100321.png" /> by the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100322.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100323.png" />-dimensional chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100324.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100325.png" />. The homology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100326.png" /> of the chain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100327.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100329.png" />-dimensional relative homology group of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100330.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100331.png" /> with coefficient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100332.png" />.
+
In the study of homology and cohomology groups of a complex one can consider the category of simplicial pairs of complexes $  ( K , L ) $
 +
and simplicial mappings $  f : ( K , L ) \rightarrow ( K ^ { \prime } , L  ^  \prime  ) $
 +
between them, and the group $  C _ {r} ( K , L ;  G ) $
 +
of $  r $-
 +
dimensional finite chains of $  K $
 +
modulo $  L $
 +
over $  G $,  
 +
this being the quotient group of the group $  C _ {r} ( K ;  G ) $
 +
of $  r $-
 +
dimensional chains of $  K $
 +
with coefficients in $  G $
 +
by the subgroup $  C _ {r} ( L ;  G ) $
 +
of $  r $-
 +
dimensional chains of $  L $
 +
with coefficients in $  G $.  
 +
The homology group $  H _ {r} ( K , L ;  G ) $
 +
of the chain complex $  \{ C _ {r} ( K ;  L ;  G ) , \partial  _ {r} \} $
 +
is called the $  r $-
 +
dimensional relative homology group of the complex $  K $
 +
modulo $  L $
 +
with coefficient group $  G $.
  
A simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100333.png" /> induces a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100334.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100335.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100336.png" />, according to the formula
+
A simplicial mapping $  f $
 +
induces a homomorphism $  f _ {1} $
 +
of the group $  C _ {r} ( K ;  G ) $
 +
into the group $  C _ {r} ( K ^ { \prime } ;  G ) $,  
 +
according to the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100337.png" /></td> </tr></table>
+
$$
 +
( f _ {1} c _ {r} )
 +
( t _ {K ^ { \prime }  }  ^ {r} )  = \sum ( \pm  c _ {r} ( t _ {K}  ^ {r} )),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100338.png" />, and the sum extends over all simplices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100339.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100340.png" /> that are mapped onto the given simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100341.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100342.png" />, where the sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100343.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100344.png" /> is chosen depending on whether or not the orientations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100345.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100346.png" /> coincide. The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100347.png" />, extended to the quotient groups, induces a group homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100348.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100349.png" />; the latter homomorphism commutes with the boundary operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100350.png" />, so that one obtains a homomorphism of relative homology groups
+
where c _ {r} \in C _ {r} ( K ;  G ) $,  
 +
and the sum extends over all simplices $  t _ {k}  ^ {r} $
 +
of $  K $
 +
that are mapped onto the given simplex $  t _ {K ^ { \prime }  }  ^ {r} $
 +
in $  K ^ { \prime } $,  
 +
where the sign $  + $
 +
or $  - $
 +
is chosen depending on whether or not the orientations of $  t _ {K ^ { \prime }  }  ^ {r} $
 +
and $  f ( t _ {K}  ^ {r} ) $
 +
coincide. The homomorphism $  f _ {1} $,  
 +
extended to the quotient groups, induces a group homomorphism of $  C _ {r} ( K , L ;  G ) $
 +
into $  C _ {r} ( K ^ { \prime } , L  ^  \prime  ;  G ) $;  
 +
the latter homomorphism commutes with the boundary operator $  \partial  _ {r} $,  
 +
so that one obtains a homomorphism of relative homology groups
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100351.png" /></td> </tr></table>
+
$$
 +
f _ {* r }  : H _ {r} ( K , L ; G )  \rightarrow \
 +
H _ {r} ( K ^ { \prime } ,\
 +
L  ^  \prime  ; G ) ,
 +
$$
  
called the homomorphism induced by the simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100352.png" />. The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100353.png" /> is a covariant functor from the category of simplicial pairs and simplicial mappings into the category of Abelian groups.
+
called the homomorphism induced by the simplicial mapping $  f $.  
 +
The pair $  ( H _ {r} , f _ {* r }  ) $
 +
is a covariant functor from the category of simplicial pairs and simplicial mappings into the category of Abelian groups.
  
The inclusion mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100354.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100355.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100356.png" /> are the pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100357.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100358.png" />, induce the exact sequence
+
The inclusion mappings $  L \subset  ^  \phi  K \subset  ^  \psi  ( K , L ) $,
 +
where $  L $
 +
and $  K $
 +
are the pairs $  ( L , \emptyset ) $
 +
and $  ( K , \emptyset ) $,  
 +
induce the exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100359.png" /></td> </tr></table>
+
$$
 +
0  \rightarrow  C _ {r} ( L ; G )
 +
  \mathop \rightarrow \limits ^  \phi    C _ {r} ( K ; G )  \mathop \rightarrow \limits ^  \psi  \
 +
C _ {r} ( K , L ; G )  \rightarrow  0 .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100360.png" /> be an arbitrary cycle of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100361.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100362.png" /> from any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100363.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100364.png" />; then there exists a chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100365.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100366.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100367.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100368.png" /> being an epimorphism), the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100369.png" /> of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100370.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100371.png" /> (that is, it vanishes on the simplices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100372.png" />) and belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100373.png" />; the chain that is equal to it — the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100374.png" /> under the monomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100375.png" /> — is a cycle in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100376.png" />. By associating the homology class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100377.png" /> of the latter cycle with a given element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100378.png" />, one obtains a homomorphism
+
Let $  z _ {r} $
 +
be an arbitrary cycle of the complex $  K $
 +
modulo $  L $
 +
from any element $  h _ {r} $
 +
of the group $  H _ {r} ( K , L ;  G ) $;  
 +
then there exists a chain c _ {r} $
 +
of $  K $
 +
such that $  \psi ( c _ {r} ) = z _ {r} $(
 +
$  \psi $
 +
being an epimorphism), the chain $  \psi ( \partial  _ {r} c _ {r} ) = \partial  _ {r} \psi ( c _ {r} ) = \partial  _ {r} z _ {r} $
 +
of the complex $  K $
 +
lies in $  L $(
 +
that is, it vanishes on the simplices of $  K \setminus  L $)  
 +
and belongs to $  \mathop{\rm Ker}  \psi $;  
 +
the chain that is equal to it — the inverse image $  \phi  ^ {-} 1 ( \partial  _ {r} z _ {r} ) $
 +
under the monomorphism $  \phi $—  
 +
is a cycle in the complex $  L $.  
 +
By associating the homology class $  h _ {r-} 1 \in H _ {r-} 1 ( L ;  G ) $
 +
of the latter cycle with a given element $  h _ {r} $,  
 +
one obtains a homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100379.png" /></td> </tr></table>
+
$$
 +
\partial  _ {* r }  : H _ {r} ( K , L ; G )  \rightarrow \
 +
H _ {r-} 1 ( L ; G ) ,
 +
$$
  
called the connecting homomorphism. It is compatible with the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100380.png" />, that is, the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100381.png" /> holds, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100382.png" /> is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100383.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100384.png" />. The inclusion mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100385.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100386.png" /> induce the exact sequence of groups
+
called the connecting homomorphism. It is compatible with the functor $  \{ H _ {r} , f _ {* r }  \} $,  
 +
that is, the equation $  \partial  _ {* r }  f _ {* r }  = ( f \mid  _ {L} ) _ {* r }  \partial  _ {* r }  $
 +
holds, where $  f \mid  _ {L} $
 +
is the restriction of $  f $
 +
to $  L $.  
 +
The inclusion mappings $  \phi : L \subset  K $,  
 +
$  \psi : K \subset  ( K , L ) $
 +
induce the exact sequence of groups
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100387.png" /></td> </tr></table>
+
$$
 +
\dots \leftarrow ^ { {\phi _ {*(}  r - 1) } } \
 +
H _ {r-} 1 ( L ; G )  \leftarrow ^ { {\partial  _ {*}  r } } \
 +
H _ {r} ( K , L ; G )  \leftarrow ^ { {\psi _ {*}  r } }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100388.png" /></td> </tr></table>
+
$$
 +
\leftarrow ^ { {\psi _ {*}  r } }  H _ {r} ( K ; G )  \leftarrow ^ { {\phi _ {*}  r } } \
 +
H _ {r} ( L ; G )  \leftarrow ^ { {\partial  _ {*(}  r + 1) } } \dots ,
 +
$$
  
called the homology sequence of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100389.png" />.
+
called the homology sequence of pairs $  ( K , L ) $.
  
Two simplicial mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100390.png" /> are said to be contiguous if for each simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100391.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100392.png" /> the simplices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100393.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100394.png" /> are faces of the same simplex in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100395.png" />. In the category of simplicial pairs and their simplicial mappings, this relation plays the role of that of homotopy: For any contiguous simplicial mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100396.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100397.png" />, the induced homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100398.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100399.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100400.png" /> are the same.
+
Two simplicial mappings $  f , g : ( K , L ) \rightarrow ( K ^ { \prime } , L  ^  \prime  ) $
 +
are said to be contiguous if for each simplex $  t  ^ {r} $
 +
in $  K $
 +
the simplices $  f ( t  ^ {r} ) $
 +
and $  g ( t  ^ {r} ) $
 +
are faces of the same simplex in $  K ^ { \prime } $.  
 +
In the category of simplicial pairs and their simplicial mappings, this relation plays the role of that of homotopy: For any contiguous simplicial mappings $  f , g : ( K , L ) \rightarrow ( K ^ { \prime } , L  ^  \prime  ) $
 +
and any $  r $,  
 +
the induced homomorphisms $  f _ {* r }  , g _ {* r }  $
 +
of the group $  H _ {r} ( K , L : G ) $
 +
into the group $  H _ {r} ( K ^ { \prime } , L  ^  \prime  ;  G ) $
 +
are the same.
  
An imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100401.png" /> is called an excision mapping if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100402.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100403.png" />. The excision property is that every excision mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100404.png" /> of simplicial pairs induces, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100405.png" />, an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100406.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100407.png" />-dimensional homology group, with coefficient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100408.png" />, of a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100409.png" /> consisting of a single point is the zero group for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100410.png" /> and is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100411.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100412.png" />.
+
An imbedding $  i : ( K _ {1} , L _ {1} ) \subset  ( K , L ) $
 +
is called an excision mapping if $  K _ {1} - L _ {1} $
 +
equals $  K - L $.  
 +
The excision property is that every excision mapping $  i $
 +
of simplicial pairs induces, for any $  r $,  
 +
an isomorphism $  i _ {* r }  : H _ {r} ( K _ {1} , L _ {1} ;  G ) \rightarrow H _ {r} ( K , L ;  G ) $.  
 +
The $  r $-
 +
dimensional homology group, with coefficient group $  G $,  
 +
of a complex $  K $
 +
consisting of a single point is the zero group for all $  r \neq 0 $
 +
and is isomorphic to $  G $
 +
for $  r = 0 $.
  
Thus, the triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100413.png" /> forms a homology theory in the sense of Steenrod–Eilenberg (see [[Steenrod–Eilenberg axioms|Steenrod–Eilenberg axioms]]).
+
Thus, the triple $  ( H _ {r} , f _ {* r }  , \partial  _ {* r }  ) $
 +
forms a homology theory in the sense of Steenrod–Eilenberg (see [[Steenrod–Eilenberg axioms|Steenrod–Eilenberg axioms]]).
  
The cohomology theory is constructed in a similar fashion. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100414.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100415.png" />-dimensional infinite cochains of a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100416.png" /> modulo the subcomplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100417.png" /> with coefficient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100418.png" /> is the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100419.png" />-dimensional cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100420.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100421.png" /> that vanish on the simplices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100422.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100423.png" />, while the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100425.png" />-dimensional relative cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100426.png" /> of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100427.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100428.png" /> with coefficient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100429.png" /> is the cohomology group of the cochain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100430.png" />.
+
The cohomology theory is constructed in a similar fashion. The group $  C  ^ {r} ( K , L ;  G ) $
 +
of $  r $-
 +
dimensional infinite cochains of a complex $  K $
 +
modulo the subcomplex $  L $
 +
with coefficient group $  G $
 +
is the set of all $  r $-
 +
dimensional cochains c ^ {r} $
 +
of $  K $
 +
that vanish on the simplices $  t  ^ {r} $
 +
of $  L $,  
 +
while the $  r $-
 +
dimensional relative cohomology group $  H  ^ {r} ( K , L ;  G ) $
 +
of the complex $  K $
 +
modulo $  L $
 +
with coefficient group $  G $
 +
is the cohomology group of the cochain complex $  \{ C  ^ {r} ( K , L ;  G ) , \delta  ^ {r} \} $.
  
A simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100431.png" /> induces a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100432.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100433.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100434.png" />:
+
A simplicial mapping $  f $
 +
induces a homomorphism $  f ^ { 1 } $
 +
of the group $  C  ^ {r} ( K ^ { \prime } ;  G ) $
 +
into the group $  C  ^ {r} ( K ;  G ) $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100435.png" /></td> </tr></table>
+
$$
 +
( f ^ { 1 } c  ^ {r} )
 +
( t _ {K}  ^ {r} )  = \
 +
c  ^ {r} ( f ( t _ {K}  ^ {r} ) ) ,\  t _ {K}  ^ {r} \in K ,\  c _ {r} \in C  ^ {r} ( K ^ { \prime } ; G ) .
 +
$$
  
The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100436.png" /> also induces a homomorphism of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100437.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100438.png" />; the latter homomorphism commutes with the coboundary operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100439.png" />, and one obtains a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100440.png" /> of the relative cohomology groups,
+
The homomorphism $  f ^ { 1 } $
 +
also induces a homomorphism of the group $  C  ^ {r} ( K ^ { \prime } , L  ^  \prime  ;G ) $
 +
into the group $  C  ^ {r} ( K , L ;  G ) $;  
 +
the latter homomorphism commutes with the coboundary operator $  \delta  ^ {r} $,  
 +
and one obtains a homomorphism $  f ^ { * r } $
 +
of the relative cohomology groups,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100441.png" /></td> </tr></table>
+
$$
 +
f ^ { * r } : H  ^ {r} ( K ^ { \prime } , L  ^  \prime  ; G )
 +
\rightarrow  H  ^ {r} ( K , L ; G ) ,
 +
$$
  
called the homomorphism induced by the simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100442.png" />. The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100443.png" /> is a contravariant functor from the category of simplicial pairs and simplicial mappings into the category of Abelian groups.
+
called the homomorphism induced by the simplicial mapping $  f $.  
 +
The pair $  ( H  ^ {r} , f ^ { * r } ) $
 +
is a contravariant functor from the category of simplicial pairs and simplicial mappings into the category of Abelian groups.
  
 
There is an exact sequence
 
There is an exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100444.png" /></td> </tr></table>
+
$$
 +
0  \leftarrow  C  ^ {r}
 +
( L ; G )  \leftarrow ^  \phi  \
 +
C  ^ {r} ( K ; G )  \leftarrow ^  \psi    C  ^ {r} ( K , L ; G)
 +
\leftarrow  0 ,
 +
$$
  
induced by the inclusions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100445.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100446.png" />. Any cocycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100447.png" /> in the cohomology class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100448.png" /> can, in an arbitrary way, be extended to a cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100449.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100450.png" /> does not belong to the subcomplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100451.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100452.png" />. The coboundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100453.png" /> of the cochain thus obtained vanishes on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100454.png" /> and belongs to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100455.png" />. The cohomology class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100456.png" /> of this cocycle is put into correspondence with the selected class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100457.png" />. This correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100458.png" /> defines a homomorphism
+
induced by the inclusions $  \phi : L \subset  K $,  
 +
$  \psi : K \subset  ( K , L ) $.  
 +
Any cocycle $  z  ^ {r} \in Z  ^ {r} ( L ;  G ) $
 +
in the cohomology class $  h  ^ {r} \in H  ^ {r} ( L ;  G ) $
 +
can, in an arbitrary way, be extended to a cochain $  z _ {1}  ^ {r} \in C  ^ {r} ( K ;  G ) $
 +
when $  t  ^ {r} $
 +
does not belong to the subcomplex $  L $
 +
of $  K $.  
 +
The coboundary $  \delta  ^ {r} z _ {1}  ^ {r} $
 +
of the cochain thus obtained vanishes on $  L $
 +
and belongs to the group $  Z  ^ {r+} 1 ( K , L ;  G ) $.  
 +
The cohomology class $  \delta  ^ {r} h  ^ {r} \in H  ^ {r+} 1 ( K , L ;  G ) $
 +
of this cocycle is put into correspondence with the selected class $  h  ^ {r} $.  
 +
This correspondence $  h  ^ {r} \rightarrow \delta  ^ {r} h  ^ {r} $
 +
defines a homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100459.png" /></td> </tr></table>
+
$$
 +
\delta ^ {* r } : H  ^ {r}
 +
( L ; G )  \rightarrow  H  ^ {r+} 1
 +
( K , L ; G ) ,
 +
$$
  
called connecting homomorphism. The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100460.png" /> is compatible with the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100461.png" />, in other words, the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100462.png" /> holds.
+
called connecting homomorphism. The homomorphism $  \delta ^ {* r } $
 +
is compatible with the functor $  \{ H  ^ {r} , f ^ { * r } \} $,  
 +
in other words, the equation $  \delta  ^ {*} r ( f \mid  _ {L} ) ^ {* r } = f ^ { * r } \delta  ^ {*} r $
 +
holds.
  
 
The sequence of groups and homomorphisms
 
The sequence of groups and homomorphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100463.png" /></td> </tr></table>
+
$$
 +
\dots \rightarrow ^ { {\phi ^ {*} r } } \
 +
H  ^ {r} ( L ; G )  \mathop \rightarrow \limits ^ { {\delta ^ {* r }}  }  H  ^ {r+} 1
 +
( K , L ; G )  \mathop \rightarrow \limits ^ { {\psi ^ {* ( r + 1 ) }}  }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100464.png" /></td> </tr></table>
+
$$
 +
\rightarrow ^ { {\psi ^ {*} ( r + 1 ) } }  H  ^ {r+} 1 (
 +
K ; G )  \rightarrow ^ { {\phi ^ {*} ( r + 1 ) } }  H  ^ {r+} 1
 +
( L ; G )  \rightarrow ^ { {\delta ^ {*} ( r + 1 ) } } \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100465.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100466.png" /> are the inclusion mappings, is an exact sequence and is called a cohomology sequence of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100467.png" />.
+
where $  \phi : L \subset  K $
 +
and $  \psi : K \subset  ( K , L ) $
 +
are the inclusion mappings, is an exact sequence and is called a cohomology sequence of the pair $  ( K , L ) $.
  
For any contiguous simplicial mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100468.png" />, and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100469.png" />, the induced group homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100470.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100471.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100472.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100473.png" /> coincide; each excision mapping of simplicial pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100474.png" /> induces an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100475.png" />. For any complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100476.png" /> consisting of a single point, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100477.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100478.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100479.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100480.png" />. Thus, the triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100481.png" /> is a cohomology theory (in the sense of Steenrod–Eilenberg).
+
For any contiguous simplicial mappings $  f , g : ( K , L ) \rightarrow ( K ^ { \prime } , L  ^  \prime  ) $,  
 +
and any $  r $,  
 +
the induced group homomorphisms $  f ^ { * r } $,  
 +
$  g ^ {* r } $
 +
of $  H  ^ {r} ( K ^ { \prime } , L  ^  \prime  ;  G ) $
 +
into $  H  ^ {r} ( K , L ;  G ) $
 +
coincide; each excision mapping of simplicial pairs $  i : ( K _ {1} , L _ {1} ) \subset  ( K , L ) $
 +
induces an isomorphism $  i ^ {* r } :  H  ^ {r} ( K , L : G ) \rightarrow H  ^ {r} ( K _ {1} , L _ {1} ;  G ) $.  
 +
For any complex $  K $
 +
consisting of a single point, $  H  ^ {r} ( K ;  G ) = 0 $
 +
for all $  r \neq 0 $,  
 +
and $  H  ^ {0} ( K ;  G ) $
 +
is isomorphic to $  G $.  
 +
Thus, the triple $  ( H  ^ {r} , f ^ { * r } , \delta ^ {* r } ) $
 +
is a cohomology theory (in the sense of Steenrod–Eilenberg).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Combinatorial topology" , Graylock , Rochester  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Aleksandrov,  "An introduction to homological dimension theory and general combinatorial topology" , Moscow  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Lefschetz,  "Algebraic topology" , Amer. Math. Soc.  (1955)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.J. Hilton,  S. Wylie,  "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press  (1960)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L.S. Pontryagin,  "Grundzüge der kombinatorischen Topologie" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Combinatorial topology" , Graylock , Rochester  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Aleksandrov,  "An introduction to homological dimension theory and general combinatorial topology" , Moscow  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Lefschetz,  "Algebraic topology" , Amer. Math. Soc.  (1955)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.J. Hilton,  S. Wylie,  "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press  (1960)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L.S. Pontryagin,  "Grundzüge der kombinatorischen Topologie" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)</TD></TR></table>

Latest revision as of 17:46, 4 June 2020


A set $ K = \{ t \} $ of elements $ t $ that is partially ordered by a reflexive regular transitive relation $ < $, together with an integer-valued function $ \mathop{\rm dim} t $, called the dimension of the element $ t $, and a number $ [ t : t ^ \prime ] $, called the incidence coefficient of the elements $ t $ and $ t ^ \prime $, satisfying the conditions: 1) $ t ^ \prime < t $ implies $ \mathop{\rm dim} t ^ \prime < \mathop{\rm dim} t $; 2) $ [ t : t ^ \prime ] = [ t ^ \prime : t ] $; 3) $ [ t : t ^ \prime ] \neq 0 $ implies that either $ t ^ \prime < t $ or $ t < t ^ \prime $, and that $ | \mathop{\rm dim} t - \mathop{\rm dim} t ^ \prime | = 1 $; and 4) for any pair of elements $ t , t ^ {\prime\prime} $ in $ K $ the dimensions of which differ by two, there exists in $ K $ at most a finite number of elements $ t ^ \prime $ such that

$$ [ t : t ^ \prime ] [ t ^ \prime : t ^ {\prime\prime} ] \neq 0,\ \ $$

and, moreover,

$$ \sum _ {t ^ \prime } [ t : t ^ \prime ] [ t ^ \prime : t ^ {\prime\prime} ] = 0 . $$

On replacing $ [ t : t ^ \prime ] $ by $ \alpha ( t) \alpha ( t ^ \prime ) [ t : t ^ \prime ] $, where $ \alpha ( t) $ is a function with values $ \pm 1 $, one obtains a complex that can be identified with $ K $; in other words, the incidences $ [ t : t ^ \prime ] $ are determined up to factors $ \alpha ( t) \alpha ( t ^ \prime ) $; transition from one value to the other is called a change of orientation of the complex $ K $; the element $ t $ preserves or changes its orientation according to whether $ \alpha ( t) = + 1 $ or $ - 1 $, respectively.

A complex $ K $ is called finite dimensional, more precisely, $ n $- dimensional, if $ n $ is the maximum dimension of the elements in $ K $; if there is no element of the maximum dimension $ k $, then $ K $ is called infinite dimensional. The star of an element $ t $ in the complex $ K $ is the set of all elements $ t ^ \prime $ in $ K $ such that $ t ^ \prime > t $. The closure of an element $ t $ in $ K $ is the set of all elements $ t ^ \prime $ in $ K $ such that $ t ^ \prime < t $. The boundary of an element $ t $ in $ K $ is the set of all elements $ t ^ \prime $ in $ K $ such that $ t ^ \prime < t $ and $ t ^ \prime \neq t $. An element $ t ^ \prime $ is called a face of an element $ t $ in $ K $ if $ t ^ \prime < t $; a face $ t ^ \prime $ of $ t $ is called a proper face if $ t ^ \prime \neq t $. Two elements $ t $ and $ t ^ \prime $ in $ K $ are said to be incident if $ t ^ \prime < t $ or $ t < t ^ \prime $. A complex $ K $ is called finite if the set of its elements is finite. A complex $ K $ is called star-finite (respectively, closure-finite) if the star (respectively, the closure) of each of its elements consists of a finite number of elements. A complex is said to be locally finite if it is star-finite and closure-finite.

A subcomplex of a complex $ K $ is any subset of $ K $ that is a complex under the same dimensions and incidence coefficients as $ K $. A subcomplex is closed closed if it contains the closure of each of its elements, and open if it contains the star of each of its elements. The complement of a closed complex is an open complex, and conversely. The star of each element of any complex is an open subcomplex, while the closure and boundary are closed subcomplexes. The $ r $- dimensional skeleton, or $ r $- skeleton, $ K ^ {r} $ of a complex $ K $ is the set of all elements $ t $ in $ K $ for which $ \mathop{\rm dim} t \leq r $; it is a closed subcomplex.

Two complexes $ K = \{ t \} $ and $ L $ are said to be isomorphic if there is a bijective mapping $ f $ of the set $ K $ to the set $ L $ such that $ \mathop{\rm dim} f ( t) = \mathop{\rm dim} t $ and $ [ t : t ^ \prime ] = [ f ( t) : f ( t ^ \prime ) ] $.

The most important type of complex is a simplicial complex, of which there exist two kinds: an abstract complex and a geometric complex.

An abstract simplicial complex $ K $ has for its elements abstract simplices (simplexes) of different dimensions. An $ r $- dimensional simplex $ t ^ {r} $ is a set of $ r + 1 $ objects $ a ^ {0} \dots a ^ {r} $. These objects, that is, the $ 0 $- dimensional simplices, are called the vertices of the complex $ K $. A simplex is oriented if its vertex set is ordered, where orderings that differ by an even permutation determine the same orientation. The $ s $- dimensional faces of a simplex $ t ^ {r} $ are the $ s $- dimensional simplices the vertices of which are contained among those of $ t ^ {r} $. A simplicial complex $ K $ contains all faces of each of its simplices. The relation $ t ^ {s} < t ^ {r} $ means that $ t ^ {s} $ is a face of $ t ^ {r} $. The faces $ ( a ^ {0} \dots a ^ {s} ) $ and $ ( a ^ {s+} 1 \dots a ^ {r} ) $ are called opposite faces of the simplex $ t ^ {r} $. If $ t ^ {r-} 1 $ is the face of $ t ^ {r} $ opposite to the vertex $ a ^ {i} $, then

$$ [ t ^ {r-} 1 : t ^ {r} ] = \ [ t ^ {r} : t ^ {r-} 1 ] = \ \pm 1 , $$

according to whether $ t ^ {r} $ has the same orientation as $ a ^ {i} t ^ {r-} 1 $ or not. If $ t ^ {r-} 1 $ is not a face of $ t ^ {r} $, then

$$ [ t ^ {r-} 1 : t ^ {r} ] = \ [ t ^ {r} : t ^ {r-} 1 ] = 0 . $$

By giving an orientation to each simplex of a simplicial complex one obtains an oriented complex $ K $.

An abstract simplicial complex is defined if the set of its vertices is known as well as the system, called a scheme, of all those finite subsets of this set that are to be taken as the simplices; here it is required that each vertex belongs to at least one element of the system and that each subset of an element belonging to the system also belongs to the system. Dimension, orientation, etc., are defined as before.

A polyhedral (cellular) complex of an $ n $- dimensional Euclidean space $ E ^ {n} $ is a countable locally finite complex $ K $ the elements of which are $ r $- dimensional cells $ t ^ {r} $, i.e. bounded convex open subsets of some $ E ^ {r} $ in $ E ^ {n} $, $ 0 \leq r \leq n $, where the cells are pairwise disjoint, the union of the cells belonging to the closure of the element $ t ^ {r} $ is the topological closure $ \overline{t}\; {} ^ {r} $ of $ t ^ {r} $ in $ E ^ {r} $, and the topological closure of the union of the cells not belonging to the star of $ t ^ {r} $ does not intersect $ t ^ {r} $. Here $ t ^ {r} < t ^ {s} $ means that either $ t ^ {r} = t ^ {s} $ or $ t ^ {r} \subset \overline{t}\; {} ^ {s} \setminus t ^ {s} $, and $ [ t ^ {r-} 1 : t ^ {r} ] $ is defined by the incidence coefficients $ [ E _ {1} ^ {r-} 1 : E ^ {r} ] = - [ E _ {2} ^ {r-} 1 : E ^ {r} ] $, where $ E _ {1} ^ {r-} 1 $ and $ E _ {2} ^ {r-} 1 $ are the two regions into which the space $ E ^ {r-} 1 $ containing $ t ^ {r-} 1 $ divides $ E ^ {r} $. The union of the cells of the polyhedral complex $ K $ obtained in this manner with the topology induced from $ E ^ {n} $ is called a polyhedron and is usually denoted by $ | K | $. A special form of a polyhedral complex is a Euclidean geometric simplicial complex, the elements of which are Euclidean simplices in $ E ^ {n} $. An $ r $- dimensional Euclidean simplex $ t ^ {r} $ consists of points $ x = ( x _ {1} \dots x _ {n} ) \in E ^ {n} $, defined by the relations

$$ x _ {k} = \ \sum _ { i= } 0 ^ { r } \lambda ^ {i} a _ {k} ^ {i} ,\ \ k = 1 \dots n , $$

where $ a ^ {i} = ( a _ {1} ^ {i} \dots a _ {n} ^ {i} ) $, $ i = 0 \dots r $, are independent points of $ E ^ {n} $( i.e. they are not contained in any $ E ^ {r-} 1 $ of $ E ^ {n} $), $ 0 < \lambda ^ {i} < 1 $,

$$ \sum _ { i= } 0 ^ { r } \lambda ^ {i} = 1 \ \ ( \textrm{ if } r = 0 ,\ x = a ^ {0} ) , $$

$ a ^ {i} $ are called the vertices of $ t ^ {r} $, $ \lambda ^ {i} $ are the barycentric coordinates of the point $ x $, and $ t ^ {r} $ is called the geometric simplex formed by the abstract simplex $ ( a ^ {0} \dots a ^ {r} ) $.

Let $ K $ be a countable locally finite abstract simplicial complex with vertices in $ E ^ {n} $, where any vertices forming a simplex are independent, any two simplexes of $ K $ having no vertices in common generate disjoint geometric complexes, and the closure of the union of all those geometric simplices that are generated by simplices of $ K $ and which do not belong to some generated simplex does not intersect the latter. The notions of dimension, order, incidence, etc., are carried over from $ K $ to the set of generated geometric simplices; this turns this set into a polyhedral complex, called a Euclidean realization of $ K $.

A geometric realization, not necessarily Euclidean, is also possible for any abstract simplicial complex. Let $ \{ a ^ {i} \} $ be the family of vertices of an arbitrary abstract simplicial complex $ K $ labelled by indices $ i $ in a totally well-ordered set $ I $, let $ | K | $ be the set of all systems $ \{ \lambda _ {i} \} $, $ i \in I $, of non-negative real numbers $ \lambda _ {i} $ such that the vertices corresponding to non-zero coordinates $ \lambda _ {i _ {0} } \dots \lambda _ {i _ {r} } $ of the system $ \{ \lambda _ {i} \} $ form a simplex $ ( a ^ {i _ {0} } \dots a ^ {i _ {r} }) $ in $ K $( the number of such coordinates is finite), and let $ \sum _ {i} \lambda _ {i} = 1 $. The simplex $ t ^ {r} = ( a ^ {i _ {0} } \dots a ^ {i _ {r} } ) $ in $ K $ is put in correspondence with the set $ | t ^ {r} | $ of all systems $ \{ \lambda _ {i} \} $ such that $ \lambda _ {i} \neq 0 $ if and only if $ i $ is one of the $ i _ {0} \dots i _ {r} $; then $ | K | $ is the union of the sets $ | t ^ {r} | $. Let $ | t ^ {r} | $ be homeomorphically imbedded in $ E ^ {r+} 1 $: Corresponding to the point $ \{ \lambda _ {i} \} $ in $ | t ^ {r} | $ is the point $ \{ \lambda _ {i _ {0} } \dots \lambda _ {i _ {r} } \} $ in $ E ^ {r+} 1 $. This introduces a topology in $ | t ^ {r} | $ and in $ | K | $: A set in $ | K | $ is taken to be open if its intersection with each $ | t ^ {r} | $ is open in $ | t ^ {r} | $. The polyhedron $ | K | $ is called a geometric realization of the complex $ K $, and $ K $ is called a triangulation of the polyhedron $ | K | $. A simplicial complex $ K $ is finite (respectively, locally finite) if and only if $ | K | $ is a compact (respectively, locally compact) space. Local finiteness of a simplicial complex $ K $ is also a necessary and sufficient condition for the metrizability of $ | K | $, where the metric is defined by the formula

$$ \rho ( \{ \lambda _ {i} \} ,\ \{ \mu _ {i} \} ) = \ \sqrt {\sum _ { i } ( \lambda _ {i} - \mu _ {i} ) ^ {2} } . $$

If $ K $ is a countable locally finite $ n $- dimensional complex, then it can be realized in the $ ( 2 n + 1 ) $- dimensional Euclidean space $ E ^ {2n+} 1 $. A complex $ K $ is realizable in a Hilbert space if $ | K | $ can be homeomorphically imbedded in this space such that every closed simplex in $ | K | $ has a Euclidean realization; this is possible if and only if $ K $ is a countable locally finite simplicial complex.

A finite geometric complex is a set of open geometric simplices that contains all the faces of each of the simplices and is such that the intersection of different simplices is empty. When studying closed simplices the second condition is replaced by the requirement that the intersection of two closed simplices be empty or a closed face of these simplices.

The notion of a complex finds its greatest application in homology theory. The use of simplicial complexes in the calculation of topological invariants of polyhedra is complicated by the fact that under triangulation of a polyhedron one may have to use many simplices. In this respect the CW-complex is preferable: in the latter the number of cells can be considerably fewer than the number of simplices in an arbitrary simplicial subdivision of the polyhedron. On the other hand, the simplicial complexes and triangulations have their advantages too. For example, in the simplicial approximation of a continuous mapping, in the composition and application of incidence matrices, in the use of complexes for the homological investigation of general topological spaces, etc.

A simplicial mapping from a complex $ K $ to a complex $ L $ is a function $ f : K \rightarrow L $ that sets up a correspondence between each vertex $ a $ of $ K $ and a vertex $ f ( a) $ of $ L $, such that whenever some vertices $ a ^ {i _ {0} } \dots a ^ {i _ {r} } $ of $ K $ form a simplex in $ K $, then the vertices $ f ( a ^ {i _ {0} } ) \dots f ( a ^ {i _ {r} } ) $, some of which may be coincident, must also form simplex in $ L $. The function $ f $ associates with each simplex $ t ^ {r} $ of $ K $ a simplex $ t ^ {s} = f ( t ^ {r} ) $ of $ L $. A simplicial mapping $ f : ( K , L ) \rightarrow ( K ^ { \prime } , L ^ \prime ) $ of a pair $ ( K , L ) $ into a pair $ ( K ^ { \prime } , L ^ \prime ) $, where $ L , L ^ \prime $ are closed subcomplexes of $ K , K ^ { \prime } $, respectively, is a simplicial mapping $ f : K \rightarrow K ^ { \prime } $ such that $ f ( L) \subset L ^ \prime $. The set of all simplicial complexes and their simplicial mappings forms a category, as does the set of all simplicial pairs and all their simplicial mappings.

The homology of a complex, which, to begin with, was expressed by numerical invariants, subsequently came to be represented by algebraic means such as groups, modules, sheaves, etc. The scheme of their construction is as follows. Let $ K $ be an arbitrary complex and let $ G $ be an Abelian group; an $ r $- dimensional chain complex (generally infinite) $ K $ over the group of coefficients $ G $ is a function $ c _ {r} $ with domain the set of all $ r $- dimensional elements of $ K $ and with range $ G $. The collection $ \{ c _ {r} \} $ of all $ r $- dimensional chains $ c _ {r} $ of the complex $ K $, denoted by $ C _ {r} ( K ; G ) $, forms a group with respect to the operation of addition

$$ ( c _ {r} + c _ {r} ^ \prime ) ( t ^ {r} ) = c _ {r} ( t ^ {r} ) + c _ {r} ^ \prime ( t ^ {r} ) ,\ c _ {r} ,\ c _ {r} ^ \prime \in C _ {r} ( K ; G ) ,\ t \in K . $$

It is called the group of $ r $- dimensional chains of $ K $ with coefficients in $ G $( or over $ G $). Under the hypothesis that $ K $ is a star-finite complex, one can introduce on $ C _ {r} ( K ; G ) $ a boundary operator $ \partial _ {r} $ by means of the formula

$$ \partial c _ {r} = \sum _ { j } \left ( \sum _ { i } c _ {r} ( t _ {i} ^ {r} ) [ t _ {i} ^ {r} : t _ {j} ^ {r-} 1 ] \right ) t _ {j} ^ {r-} 1 , $$

which defines a homomorphism

$$ \partial _ {r} : C _ {r} ( K ; G ) \rightarrow C _ {r-} 1 ( K ; G ) . $$

Because the equation $ \partial _ {r-} 1 \partial _ {r} = 0 $ holds, one obtains a chain complex $ \{ C _ {r} ( K ; G ) , \partial _ {r} \} $, whose homology group $ H _ {r} ( K ; G ) $( i.e. the quotient group of $ \mathop{\rm Ker} \partial _ {r} $ by the subgroup $ \mathop{\rm Im} \partial _ {r+} 1 $) is called the $ r $- dimensional homology group of the complex $ K $ with coefficients in $ G $. (The group $ \mathop{\rm Ker} \partial _ {r} $ is often denoted by $ Z _ {r} ( K ; G ) $ and is called the group of $ r $- dimensional cycles of the complex $ K $ with coefficients in $ G $, while the group $ \mathop{\rm Im} \partial _ {r+} 1 $ is denoted by $ B _ {r} ( K ; G ) $ and is called the group of $ r $- dimensional boundaries of the complex $ K $ with coefficients in $ G $.)

As well as homology groups, cohomology groups are also defined for a complex. For their definition, one starts again with a group of chains, called in this case the group of cochains, and denoted by $ C ^ {r} ( K ; G ) $. The complex $ K $ is here assumed to be closed-finite, while the coboundary operator $ \partial ^ {r} $ is defined by the formula

$$ \delta ^ {r} c ^ {r} = \ \sum _ { j } \left ( \sum _ { i } c ^ {r} ( t _ {i} ^ {r} ) [ t _ {i} ^ {r} : t _ {j} ^ {r+} 1 ] \right ) t _ {j} ^ {r+} 1 , $$

defining a homomorphism

$$ \delta ^ {r} : C ^ {r} ( K ; G ) \rightarrow C ^ {r+} 1 ( K ; G ) . $$

For this cochain complex $ \{ C ^ {r} ( K ; G ) , \delta ^ {r} \} $, $ \delta ^ {r+} 1 \delta ^ {r} = 0 $, the cohomology group $ H ^ {r} ( k ; G ) $, i.e. the quotient group of $ \mathop{\rm Ker} \delta ^ {r} $ by the subgroup $ \mathop{\rm Im} \delta ^ {r-} 1 $, is called the $ r $- dimensional cohomology group of the complex $ K $ with coefficients in $ G $. (The group $ \mathop{\rm Ker} \delta ^ {r} $ is usually denoted by $ Z ^ {r} ( K ; G ) $ and is called the group of $ r $- dimensional cocycles of the complex $ K $ with coefficients in $ G $, while the group $ \mathop{\rm Im} \delta ^ {r-} 1 $ is denoted by $ B ^ {r} ( K ; G ) $ and is called the group of $ r $- dimensional coboundaries of the complex $ K $ with coefficients in $ G $.)

Star- (or closed-) finiteness of the complex is required in order that the summation in the definition of the boundary (or coboundary) operator be finite. In the case of a star-finite complex one can define the homology groups of arbitrary (infinite) cycles and the cohomology groups of finite cocycles. In the case of a closed-finite complex one can define the homology groups of infinite cocycles and the homology groups of finite cycles. In the case of a locally finite complex, one can define both finite and infinite homology and cohomology groups. If the complex is arbitrary, then its homology (respectively, cohomology) groups are defined as the direct (respectively, inverse) limit of the spectrum of the homology (respectively, cohomology) groups of all locally finite subcomplexes of the given complex, ordered by increasing size.

In the study of homology and cohomology groups of a complex one can consider the category of simplicial pairs of complexes $ ( K , L ) $ and simplicial mappings $ f : ( K , L ) \rightarrow ( K ^ { \prime } , L ^ \prime ) $ between them, and the group $ C _ {r} ( K , L ; G ) $ of $ r $- dimensional finite chains of $ K $ modulo $ L $ over $ G $, this being the quotient group of the group $ C _ {r} ( K ; G ) $ of $ r $- dimensional chains of $ K $ with coefficients in $ G $ by the subgroup $ C _ {r} ( L ; G ) $ of $ r $- dimensional chains of $ L $ with coefficients in $ G $. The homology group $ H _ {r} ( K , L ; G ) $ of the chain complex $ \{ C _ {r} ( K ; L ; G ) , \partial _ {r} \} $ is called the $ r $- dimensional relative homology group of the complex $ K $ modulo $ L $ with coefficient group $ G $.

A simplicial mapping $ f $ induces a homomorphism $ f _ {1} $ of the group $ C _ {r} ( K ; G ) $ into the group $ C _ {r} ( K ^ { \prime } ; G ) $, according to the formula

$$ ( f _ {1} c _ {r} ) ( t _ {K ^ { \prime } } ^ {r} ) = \sum ( \pm c _ {r} ( t _ {K} ^ {r} )), $$

where $ c _ {r} \in C _ {r} ( K ; G ) $, and the sum extends over all simplices $ t _ {k} ^ {r} $ of $ K $ that are mapped onto the given simplex $ t _ {K ^ { \prime } } ^ {r} $ in $ K ^ { \prime } $, where the sign $ + $ or $ - $ is chosen depending on whether or not the orientations of $ t _ {K ^ { \prime } } ^ {r} $ and $ f ( t _ {K} ^ {r} ) $ coincide. The homomorphism $ f _ {1} $, extended to the quotient groups, induces a group homomorphism of $ C _ {r} ( K , L ; G ) $ into $ C _ {r} ( K ^ { \prime } , L ^ \prime ; G ) $; the latter homomorphism commutes with the boundary operator $ \partial _ {r} $, so that one obtains a homomorphism of relative homology groups

$$ f _ {* r } : H _ {r} ( K , L ; G ) \rightarrow \ H _ {r} ( K ^ { \prime } ,\ L ^ \prime ; G ) , $$

called the homomorphism induced by the simplicial mapping $ f $. The pair $ ( H _ {r} , f _ {* r } ) $ is a covariant functor from the category of simplicial pairs and simplicial mappings into the category of Abelian groups.

The inclusion mappings $ L \subset ^ \phi K \subset ^ \psi ( K , L ) $, where $ L $ and $ K $ are the pairs $ ( L , \emptyset ) $ and $ ( K , \emptyset ) $, induce the exact sequence

$$ 0 \rightarrow C _ {r} ( L ; G ) \mathop \rightarrow \limits ^ \phi C _ {r} ( K ; G ) \mathop \rightarrow \limits ^ \psi \ C _ {r} ( K , L ; G ) \rightarrow 0 . $$

Let $ z _ {r} $ be an arbitrary cycle of the complex $ K $ modulo $ L $ from any element $ h _ {r} $ of the group $ H _ {r} ( K , L ; G ) $; then there exists a chain $ c _ {r} $ of $ K $ such that $ \psi ( c _ {r} ) = z _ {r} $( $ \psi $ being an epimorphism), the chain $ \psi ( \partial _ {r} c _ {r} ) = \partial _ {r} \psi ( c _ {r} ) = \partial _ {r} z _ {r} $ of the complex $ K $ lies in $ L $( that is, it vanishes on the simplices of $ K \setminus L $) and belongs to $ \mathop{\rm Ker} \psi $; the chain that is equal to it — the inverse image $ \phi ^ {-} 1 ( \partial _ {r} z _ {r} ) $ under the monomorphism $ \phi $— is a cycle in the complex $ L $. By associating the homology class $ h _ {r-} 1 \in H _ {r-} 1 ( L ; G ) $ of the latter cycle with a given element $ h _ {r} $, one obtains a homomorphism

$$ \partial _ {* r } : H _ {r} ( K , L ; G ) \rightarrow \ H _ {r-} 1 ( L ; G ) , $$

called the connecting homomorphism. It is compatible with the functor $ \{ H _ {r} , f _ {* r } \} $, that is, the equation $ \partial _ {* r } f _ {* r } = ( f \mid _ {L} ) _ {* r } \partial _ {* r } $ holds, where $ f \mid _ {L} $ is the restriction of $ f $ to $ L $. The inclusion mappings $ \phi : L \subset K $, $ \psi : K \subset ( K , L ) $ induce the exact sequence of groups

$$ \dots \leftarrow ^ { {\phi _ {*(} r - 1) } } \ H _ {r-} 1 ( L ; G ) \leftarrow ^ { {\partial _ {*} r } } \ H _ {r} ( K , L ; G ) \leftarrow ^ { {\psi _ {*} r } } $$

$$ \leftarrow ^ { {\psi _ {*} r } } H _ {r} ( K ; G ) \leftarrow ^ { {\phi _ {*} r } } \ H _ {r} ( L ; G ) \leftarrow ^ { {\partial _ {*(} r + 1) } } \dots , $$

called the homology sequence of pairs $ ( K , L ) $.

Two simplicial mappings $ f , g : ( K , L ) \rightarrow ( K ^ { \prime } , L ^ \prime ) $ are said to be contiguous if for each simplex $ t ^ {r} $ in $ K $ the simplices $ f ( t ^ {r} ) $ and $ g ( t ^ {r} ) $ are faces of the same simplex in $ K ^ { \prime } $. In the category of simplicial pairs and their simplicial mappings, this relation plays the role of that of homotopy: For any contiguous simplicial mappings $ f , g : ( K , L ) \rightarrow ( K ^ { \prime } , L ^ \prime ) $ and any $ r $, the induced homomorphisms $ f _ {* r } , g _ {* r } $ of the group $ H _ {r} ( K , L : G ) $ into the group $ H _ {r} ( K ^ { \prime } , L ^ \prime ; G ) $ are the same.

An imbedding $ i : ( K _ {1} , L _ {1} ) \subset ( K , L ) $ is called an excision mapping if $ K _ {1} - L _ {1} $ equals $ K - L $. The excision property is that every excision mapping $ i $ of simplicial pairs induces, for any $ r $, an isomorphism $ i _ {* r } : H _ {r} ( K _ {1} , L _ {1} ; G ) \rightarrow H _ {r} ( K , L ; G ) $. The $ r $- dimensional homology group, with coefficient group $ G $, of a complex $ K $ consisting of a single point is the zero group for all $ r \neq 0 $ and is isomorphic to $ G $ for $ r = 0 $.

Thus, the triple $ ( H _ {r} , f _ {* r } , \partial _ {* r } ) $ forms a homology theory in the sense of Steenrod–Eilenberg (see Steenrod–Eilenberg axioms).

The cohomology theory is constructed in a similar fashion. The group $ C ^ {r} ( K , L ; G ) $ of $ r $- dimensional infinite cochains of a complex $ K $ modulo the subcomplex $ L $ with coefficient group $ G $ is the set of all $ r $- dimensional cochains $ c ^ {r} $ of $ K $ that vanish on the simplices $ t ^ {r} $ of $ L $, while the $ r $- dimensional relative cohomology group $ H ^ {r} ( K , L ; G ) $ of the complex $ K $ modulo $ L $ with coefficient group $ G $ is the cohomology group of the cochain complex $ \{ C ^ {r} ( K , L ; G ) , \delta ^ {r} \} $.

A simplicial mapping $ f $ induces a homomorphism $ f ^ { 1 } $ of the group $ C ^ {r} ( K ^ { \prime } ; G ) $ into the group $ C ^ {r} ( K ; G ) $:

$$ ( f ^ { 1 } c ^ {r} ) ( t _ {K} ^ {r} ) = \ c ^ {r} ( f ( t _ {K} ^ {r} ) ) ,\ t _ {K} ^ {r} \in K ,\ c _ {r} \in C ^ {r} ( K ^ { \prime } ; G ) . $$

The homomorphism $ f ^ { 1 } $ also induces a homomorphism of the group $ C ^ {r} ( K ^ { \prime } , L ^ \prime ;G ) $ into the group $ C ^ {r} ( K , L ; G ) $; the latter homomorphism commutes with the coboundary operator $ \delta ^ {r} $, and one obtains a homomorphism $ f ^ { * r } $ of the relative cohomology groups,

$$ f ^ { * r } : H ^ {r} ( K ^ { \prime } , L ^ \prime ; G ) \rightarrow H ^ {r} ( K , L ; G ) , $$

called the homomorphism induced by the simplicial mapping $ f $. The pair $ ( H ^ {r} , f ^ { * r } ) $ is a contravariant functor from the category of simplicial pairs and simplicial mappings into the category of Abelian groups.

There is an exact sequence

$$ 0 \leftarrow C ^ {r} ( L ; G ) \leftarrow ^ \phi \ C ^ {r} ( K ; G ) \leftarrow ^ \psi C ^ {r} ( K , L ; G) \leftarrow 0 , $$

induced by the inclusions $ \phi : L \subset K $, $ \psi : K \subset ( K , L ) $. Any cocycle $ z ^ {r} \in Z ^ {r} ( L ; G ) $ in the cohomology class $ h ^ {r} \in H ^ {r} ( L ; G ) $ can, in an arbitrary way, be extended to a cochain $ z _ {1} ^ {r} \in C ^ {r} ( K ; G ) $ when $ t ^ {r} $ does not belong to the subcomplex $ L $ of $ K $. The coboundary $ \delta ^ {r} z _ {1} ^ {r} $ of the cochain thus obtained vanishes on $ L $ and belongs to the group $ Z ^ {r+} 1 ( K , L ; G ) $. The cohomology class $ \delta ^ {r} h ^ {r} \in H ^ {r+} 1 ( K , L ; G ) $ of this cocycle is put into correspondence with the selected class $ h ^ {r} $. This correspondence $ h ^ {r} \rightarrow \delta ^ {r} h ^ {r} $ defines a homomorphism

$$ \delta ^ {* r } : H ^ {r} ( L ; G ) \rightarrow H ^ {r+} 1 ( K , L ; G ) , $$

called connecting homomorphism. The homomorphism $ \delta ^ {* r } $ is compatible with the functor $ \{ H ^ {r} , f ^ { * r } \} $, in other words, the equation $ \delta ^ {*} r ( f \mid _ {L} ) ^ {* r } = f ^ { * r } \delta ^ {*} r $ holds.

The sequence of groups and homomorphisms

$$ \dots \rightarrow ^ { {\phi ^ {*} r } } \ H ^ {r} ( L ; G ) \mathop \rightarrow \limits ^ { {\delta ^ {* r }} } H ^ {r+} 1 ( K , L ; G ) \mathop \rightarrow \limits ^ { {\psi ^ {* ( r + 1 ) }} } $$

$$ \rightarrow ^ { {\psi ^ {*} ( r + 1 ) } } H ^ {r+} 1 ( K ; G ) \rightarrow ^ { {\phi ^ {*} ( r + 1 ) } } H ^ {r+} 1 ( L ; G ) \rightarrow ^ { {\delta ^ {*} ( r + 1 ) } } \dots , $$

where $ \phi : L \subset K $ and $ \psi : K \subset ( K , L ) $ are the inclusion mappings, is an exact sequence and is called a cohomology sequence of the pair $ ( K , L ) $.

For any contiguous simplicial mappings $ f , g : ( K , L ) \rightarrow ( K ^ { \prime } , L ^ \prime ) $, and any $ r $, the induced group homomorphisms $ f ^ { * r } $, $ g ^ {* r } $ of $ H ^ {r} ( K ^ { \prime } , L ^ \prime ; G ) $ into $ H ^ {r} ( K , L ; G ) $ coincide; each excision mapping of simplicial pairs $ i : ( K _ {1} , L _ {1} ) \subset ( K , L ) $ induces an isomorphism $ i ^ {* r } : H ^ {r} ( K , L : G ) \rightarrow H ^ {r} ( K _ {1} , L _ {1} ; G ) $. For any complex $ K $ consisting of a single point, $ H ^ {r} ( K ; G ) = 0 $ for all $ r \neq 0 $, and $ H ^ {0} ( K ; G ) $ is isomorphic to $ G $. Thus, the triple $ ( H ^ {r} , f ^ { * r } , \delta ^ {* r } ) $ is a cohomology theory (in the sense of Steenrod–Eilenberg).

References

[1] P.S. Aleksandrov, "Combinatorial topology" , Graylock , Rochester (1956) (Translated from Russian)
[2] P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)
[3] S. Lefschetz, "Algebraic topology" , Amer. Math. Soc. (1955)
[4] P.J. Hilton, S. Wylie, "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press (1960)
[5] L.S. Pontryagin, "Grundzüge der kombinatorischen Topologie" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)

Comments

References

[a1] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
[a2] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975)
How to Cite This Entry:
Complex. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complex&oldid=13102
This article was adapted from an original article by D.O. Baladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article