Namespaces
Variants
Actions

Difference between revisions of "Cohomology of groups"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (→‎References: latexify)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
c0231301.png
 +
$#A+1 = 244 n = 1
 +
$#C+1 = 244 : ~/encyclopedia/old_files/data/C023/C.0203130 Cohomology of groups
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Historically, the earliest theory of a [[Cohomology of algebras|cohomology of algebras]].
 
Historically, the earliest theory of a [[Cohomology of algebras|cohomology of algebras]].
  
With every pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231301.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231302.png" /> is a group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231303.png" /> a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231304.png" />-module (that is, a module over the integral group ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231305.png" />), there is associated a sequence of Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231306.png" />, called the cohomology groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231307.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231308.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231309.png" />, which runs over the non-negative integers, is called the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313010.png" />. The cohomology groups of groups are important invariants containing information both on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313011.png" /> and on the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313012.png" />.
+
With every pair $  ( G, A) $,  
 +
where $  G $
 +
is a group and $  A $
 +
a left $  G $-
 +
module (that is, a module over the integral group ring $  \mathbf Z G $),  
 +
there is associated a sequence of Abelian groups $  H ^ { n } ( G, A) $,  
 +
called the cohomology groups of $  G $
 +
with coefficients in $  A $.  
 +
The number $  n $,  
 +
which runs over the non-negative integers, is called the dimension of $  H ^ { n } ( G, A) $.  
 +
The cohomology groups of groups are important invariants containing information both on the group $  G $
 +
and on the module $  A $.
  
By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313013.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313015.png" /> is the submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313016.png" />-invariant elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313017.png" />. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313019.png" />, are defined as the values of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313020.png" />-th [[Derived functor|derived functor]] of the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313021.png" />. Let
+
By definition, $  H  ^ {0} ( G, A) $
 +
is $  \mathop{\rm Hom} _ {G} ( \mathbf Z , A) \simeq A  ^ {G} $,  
 +
where $  A  ^ {G} $
 +
is the submodule of $  G $-
 +
invariant elements in $  A $.  
 +
The groups $  H ^ { n } ( G, A) $,  
 +
$  n > 1 $,  
 +
are defined as the values of the $  n $-
 +
th [[Derived functor|derived functor]] of the functor $  A \mapsto H  ^ {0} ( G, A) $.  
 +
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313022.png" /></td> </tr></table>
+
$$
 +
\dots \rightarrow ^ { {d _ n} } \
 +
P _ {n}  \rightarrow ^ { {d _ {n}  - 1 } } \
 +
P _ {n - 1 }  \rightarrow \dots \rightarrow \
 +
P _ {0}  \rightarrow  \mathbf Z  \rightarrow  0
 +
$$
  
be some projective [[Resolution|resolution]] of the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313023.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313024.png" /> in the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313025.png" />-modules, that is, an exact sequence in which every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313026.png" /> is a projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313027.png" />-module. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313028.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313029.png" />-th cohomology group of the [[Complex|complex]]
+
be some projective [[Resolution|resolution]] of the trivial $  G $-
 +
module $  \mathbf Z $
 +
in the category of $  G $-
 +
modules, that is, an exact sequence in which every $  P _ {i} $
 +
is a projective $  \mathbf Z G $-
 +
module. Then $  H ^ { n } ( G, A) $
 +
is the $  n $-
 +
th cohomology group of the [[Complex|complex]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313030.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  \mathop{\rm Hom} _ {G} ( P _ {0} , A)  \rightarrow ^ { {d _ 0}  ^  \prime  } \
 +
\mathop{\rm Hom} _ {G} ( P _ {1} , A)  \rightarrow \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313031.png" /> is induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313032.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313033.png" />.
+
where $  d _ {n} ^ { \prime } $
 +
is induced by $  d _ {n} $,  
 +
that is, $  H ^ { n } ( G, A) = \mathop{\rm Ker}  d _ {n} ^ { \prime } / \mathop{\rm Im}  d _ {n - 1 }  ^ { \prime } $.
  
The homology groups of a group are defined using the dual construction, in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313034.png" /> is replaced everywhere by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313035.png" />.
+
The homology groups of a group are defined using the dual construction, in which $  \mathop{\rm Hom} _ {G} $
 +
is replaced everywhere by $  \otimes _ {G} $.
  
The set of functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313037.png" /> is a cohomological functor (see [[Homology functor|Homology functor]]; [[Cohomology functor|Cohomology functor]]) on the category of left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313038.png" />-modules.
+
The set of functors $  A \mapsto H ^ { n } ( G, A) $,
 +
$  n = 0, 1 \dots $
 +
is a cohomological functor (see [[Homology functor|Homology functor]]; [[Cohomology functor|Cohomology functor]]) on the category of left $  G $-
 +
modules.
  
A module of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313039.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313040.png" /> is an Abelian group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313041.png" /> acts on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313042.png" /> according to the formula
+
A module of the form $  B = \mathop{\rm Hom} ( \mathbf Z [ G], X) $,  
 +
where $  X $
 +
is an Abelian group and $  G $
 +
acts on $  B $
 +
according to the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313043.png" /></td> </tr></table>
+
$$
 +
( g \phi ) ( t)  = \
 +
\phi ( tg),\ \
 +
\phi \in B,\ \
 +
t \in \mathbf Z G,
 +
$$
  
is said to be co-induced. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313044.png" /> is injective or co-induced, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313045.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313046.png" />. Every module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313047.png" /> is isomorphic to a submodule of a co-induced module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313048.png" />. The exact homology sequence for the sequence
+
is said to be co-induced. If $  A $
 +
is injective or co-induced, then $  H ^ { n } ( G, A) = 0 $
 +
for $  n \geq  1 $.  
 +
Every module $  A $
 +
is isomorphic to a submodule of a co-induced module $  B $.  
 +
The exact homology sequence for the sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313049.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  A  \rightarrow  B  \rightarrow  B/A  \rightarrow  0
 +
$$
  
then defines isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313051.png" />, and an exact sequence
+
then defines isomorphisms $  H ^ { n } ( G, B/A) \simeq H ^ { n + 1 } ( G, A) $,  
 +
$  n \geq  1 $,  
 +
and an exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313052.png" /></td> </tr></table>
+
$$
 +
B  ^ {G}  \rightarrow \
 +
( B/A)  ^ {G}  \rightarrow \
 +
H  ^ {1} ( G, A)  \rightarrow  0.
 +
$$
  
Therefore, the computation of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313053.png" />-dimensional cohomology group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313054.png" /> reduces to calculating the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313055.png" />-dimensional cohomology group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313056.png" />. This device is called dimension shifting.
+
Therefore, the computation of the $  ( n + 1) $-
 +
dimensional cohomology group of $  A $
 +
reduces to calculating the $  n $-
 +
dimensional cohomology group of $  B/A $.  
 +
This device is called dimension shifting.
  
Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313057.png" /> from the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313058.png" />-modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313060.png" />, for every co-induced module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313061.png" />.
+
Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors $  A \mapsto H ^ { n } ( G, A) $
 +
from the category of $  G $-
 +
modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that $  H ^ { n } ( G, B) = 0 $,  
 +
$  n \geq  1 $,  
 +
for every co-induced module $  B $.
  
The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313062.png" /> can also be defined as equivalence classes of exact sequences of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313063.png" />-modules of the form
+
The groups $  H ^ { n } ( G, A) $
 +
can also be defined as equivalence classes of exact sequences of $  G $-
 +
modules of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313064.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  A  \rightarrow  M _ {1}  \rightarrow \dots \rightarrow  M _ {n}  \rightarrow  \mathbf Z  \rightarrow  0
 +
$$
  
 
with respect to a suitably defined equivalence relation (see [[#References|[1]]], Chapt. 3, 4).
 
with respect to a suitably defined equivalence relation (see [[#References|[1]]], Chapt. 3, 4).
  
To compute the cohomology groups, the standard resolution of the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313065.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313066.png" /> is generally used, in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313067.png" /> and, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313068.png" />,
+
To compute the cohomology groups, the standard resolution of the trivial $  G $-
 +
module $  \mathbf Z $
 +
is generally used, in which $  P _ {n} = \mathbf Z [ G ^ {n + 1 } ] $
 +
and, for $  ( g _ {0} \dots g _ {n} ) \in G ^ {n + 1 } $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313069.png" /></td> </tr></table>
+
$$
 +
d _ {n} ( g _ {0} \dots g _ {n} )  = \
 +
\sum _ {i = 0 } ^ { n }  (- 1)  ^ {i}
 +
( g _ {0} \dots \widehat{g}  _ {i} \dots g _ {n} ),
 +
$$
  
where the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313070.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313071.png" /> means that the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313072.png" /> is omitted. The cochains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313073.png" /> are the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313074.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313075.png" />. Changing variables according to the rules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313078.png" />, one can go over to inhomogeneous cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313079.png" />. The coboundary operation then acts as follows:
+
where the symbol $  \widehat{ {}}  $
 +
over $  g _ {i} $
 +
means that the term $  g _ {i} $
 +
is omitted. The cochains in $  \mathop{\rm Hom} _ {G} ( P _ {n} , A) $
 +
are the functions $  f ( g _ {0} \dots g _ {n} ) $
 +
for which $  gf ( g _ {0} \dots g _ {n} ) = f ( gg _ {0} \dots gg _ {n} ) $.  
 +
Changing variables according to the rules $  g _ {0} = 1 $,  
 +
$  g _ {1} = h _ {1} $,  
 +
$  g _ {2} = h _ {1} h _ {2} \dots g _ {n} = h _ {1} \dots h _ {n} $,  
 +
one can go over to inhomogeneous cochains $  f ( h _ {1} \dots h _ {n} ) $.  
 +
The coboundary operation then acts as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313080.png" /></td> </tr></table>
+
$$
 +
d  ^  \prime  f ( h _ {1} \dots h _ {n + 1 }  )  = \
 +
h _ {1} f ( h _ {2} \dots h _ {n + 1 }  ) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313081.png" /></td> </tr></table>
+
$$
 +
+
 +
\sum _ {i = 1 } ^ { n }  (- 1)  ^ {i} f ( h _ {1} \dots h _ {i} h _ {i + 1 }  \dots h _ {n + 1 }  ) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313082.png" /></td> </tr></table>
+
$$
 +
+
 +
(- 1) ^ {n + 1 } f ( h _ {1} \dots h _ {n} ).
 +
$$
  
For example, a one-dimensional cocycle is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313083.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313084.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313085.png" />, and a coboundary is a function of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313086.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313087.png" />. A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313088.png" /> acts trivially on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313089.png" />, crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313090.png" /> in this case.
+
For example, a one-dimensional cocycle is a function $  f: G \rightarrow A $
 +
for which $  f ( g _ {1} g _ {2} ) = g _ {1} f ( g _ {2} ) + f ( g _ {1} ) $
 +
for all $  g _ {1} , g _ {2} \in G $,  
 +
and a coboundary is a function of the form $  f ( g) = ga - a $
 +
for some $  a \in A $.  
 +
A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When $  G $
 +
acts trivially on $  A $,  
 +
crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, $  H  ^ {1} ( G, A) = \mathop{\rm Hom} ( G, A) $
 +
in this case.
  
The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313091.png" /> can be interpreted as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313092.png" />-conjugacy classes of sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313093.png" /> in the exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313094.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313095.png" /> is the [[Semi-direct product|semi-direct product]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313096.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313097.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313098.png" /> can be interpreted as classes of extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313099.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130100.png" />. Finally, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130101.png" /> can be interpreted as obstructions to extensions of non-Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130102.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130103.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130104.png" /> (see [[#References|[1]]]). For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130105.png" />, there are no analogous interpretations known (1978) for the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130106.png" />.
+
The elements of $  H  ^ {1} ( G, A) $
 +
can be interpreted as the $  A $-
 +
conjugacy classes of sections $  G \rightarrow F $
 +
in the exact sequence $  1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $,  
 +
where $  F $
 +
is the [[Semi-direct product|semi-direct product]] of $  G $
 +
and $  A $.  
 +
The elements of $  H  ^ {2} ( G, A) $
 +
can be interpreted as classes of extensions of $  A $
 +
by $  G $.  
 +
Finally, $  H  ^ {3} ( G, A) $
 +
can be interpreted as obstructions to extensions of non-Abelian groups $  H $
 +
with centre $  A $
 +
by $  G $(
 +
see [[#References|[1]]]). For $  n > 3 $,  
 +
there are no analogous interpretations known (1978) for the groups $  H ^ { n } ( G, A) $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130107.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130108.png" />, then restriction of cocycles from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130109.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130110.png" /> defines functorial restriction homomorphisms for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130111.png" />:
+
If $  H $
 +
is a subgroup of $  G $,  
 +
then restriction of cocycles from $  G $
 +
to $  H $
 +
defines functorial restriction homomorphisms for all $  n $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130112.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm res} : \
 +
H ^ { n } ( G, A)  \rightarrow \
 +
H ^ { n } ( H, A).
 +
$$
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130114.png" /> is just the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130115.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130116.png" /> is some quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130117.png" />, then lifting cocycles from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130118.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130119.png" /> induces the functorial inflation homomorphism
+
For $  n = 0 $,  
 +
$  \mathop{\rm res} $
 +
is just the imbedding $  A  ^ {G} \subset  A  ^ {H} $.  
 +
If $  G/H $
 +
is some quotient group of $  G $,  
 +
then lifting cocycles from $  G/H $
 +
to $  G $
 +
induces the functorial inflation homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130120.png" /></td> </tr></table>
+
$$
 +
\inf : \
 +
H ^ { n } ( G/H,\
 +
A  ^ {H} )  \rightarrow \
 +
H ^ { n } ( G, A).
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130121.png" /> be a homomorphism. Then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130122.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130123.png" /> can be regarded as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130124.png" />-module by setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130125.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130126.png" />. Combining the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130127.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130128.png" /> gives mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130129.png" />. In this sense <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130130.png" /> is a contravariant functor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130131.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130132.png" /> is a group of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130133.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130134.png" /> can be given the structure of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130135.png" />-module. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130136.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130137.png" />, the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130138.png" /> can be equipped with a natural <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130139.png" />-module structure. This is possible thanks to the fact that inner automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130140.png" /> induce the identity mapping on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130141.png" />. In particular, for a normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130142.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130143.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130144.png" />.
+
Let $  \phi : G  ^  \prime  \rightarrow G $
 +
be a homomorphism. Then every $  G $-
 +
module $  A $
 +
can be regarded as a $  G  ^  \prime  $-
 +
module by setting $  g  ^  \prime  a = \phi ( g  ^  \prime  ) a $
 +
for $  g  ^  \prime  \in G  ^  \prime  $.  
 +
Combining the mappings $  \mathop{\rm res} $
 +
and $  \inf $
 +
gives mappings $  H ^ { n } ( G  ^  \prime  , A) \rightarrow H ^ { n } ( G, A) $.  
 +
In this sense $  H  ^ {*} ( G, A) $
 +
is a contravariant functor of $  G $.  
 +
If $  \Pi $
 +
is a group of automorphisms of $  G $,  
 +
then $  H ^ { n } ( G, A) $
 +
can be given the structure of a $  \Pi $-
 +
module. For example, if $  H $
 +
is a normal subgroup of $  G $,  
 +
the groups $  H ^ { n } ( H, A) $
 +
can be equipped with a natural $  G/H $-
 +
module structure. This is possible thanks to the fact that inner automorphisms of $  G $
 +
induce the identity mapping on the $  H ^ { n } ( G, A) $.  
 +
In particular, for a normal subgroup $  H $
 +
in $  G $,
 +
$  \mathop{\rm Im}  \mathop{\rm res} \subset  H ^ { n } ( H, A)  ^ {G/H} $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130145.png" /> be a subgroup of finite index in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130146.png" />. Using the norm map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130147.png" />, one can use dimension shifting to define the functorial co-restriction mappings for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130148.png" />:
+
Let $  H $
 +
be a subgroup of finite index in the group $  G $.  
 +
Using the norm map $  N _ {G/H} : A  ^ {H} \rightarrow A  ^ {G} $,  
 +
one can use dimension shifting to define the functorial co-restriction mappings for all $  n $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130149.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm cores} : \
 +
H ^ { n } ( H, A)  \rightarrow \
 +
H ^ { n } ( G, A).
 +
$$
  
These satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130150.png" />.
+
These satisfy $  \mathop{\rm cores} \cdot  \mathop{\rm res} = ( G: H) $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130151.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130152.png" /> then there exists the Lyndon spectral sequence with second term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130153.png" /> converging to the cohomology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130154.png" /> (see [[#References|[1]]], Chapt. 11). In small dimensions it leads to the exact sequence
+
If $  H $
 +
is a normal subgroup of $  G $
 +
then there exists the Lyndon spectral sequence with second term $  E _ {2}  ^ {p,q} = H ^ { p } ( G/H, H ^ { q } ( H, A)) $
 +
converging to the cohomology $  H ^ { n } ( G, A) $(
 +
see [[#References|[1]]], Chapt. 11). In small dimensions it leads to the exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130155.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  H  ^ {1} ( G/H, A  ^ {H} )
 +
  \mathop \rightarrow \limits ^ { \inf }  \
 +
H  ^ {1} ( G, A)
 +
  \mathop \rightarrow \limits ^ { { \mathop{\rm res}}  } \
 +
H  ^ {1} ( H, A)  ^ {G/H}
 +
  \mathop \rightarrow \limits ^ { { \mathop{\rm tr}}  }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130156.png" /></td> </tr></table>
+
$$
 +
\mathop \rightarrow \limits ^ { { \mathop{\rm tr}}  }  H  ^ {2} ( G/H, A  ^ {H} )  \mathop \rightarrow \limits ^ { \inf }  H  ^ {2} ( G, A),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130157.png" /> is the transgression mapping.
+
where $  \mathop{\rm tr} $
 +
is the transgression mapping.
  
For a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130158.png" />, the norm map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130159.png" /> induces the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130160.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130161.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130162.png" /> is the ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130163.png" /> generated by the elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130164.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130165.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130166.png" /> can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130167.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130168.png" />. Here
+
For a finite group $  G $,  
 +
the norm map $  N _ {G} : A \rightarrow A $
 +
induces the mapping $  \widehat{N}  _ {G} :  H _ {0} ( G, A) \rightarrow H  ^ {0} ( G, A) $,  
 +
where $  H _ {0} ( G, A) = A/J _ {G} A $
 +
and $  J _ {G} $
 +
is the ideal of $  \mathbf Z G $
 +
generated by the elements of the form $  g - 1 $,  
 +
$  g \in G $.  
 +
The mapping $  N _ {G} $
 +
can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) $  \widehat{H}  {} ^ {n } ( G, A) $
 +
for all $  n $.  
 +
Here
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130169.png" /></td> </tr></table>
+
$$
 +
\widehat{H}  {} ^ {n } ( G, A)  = H ^ { n } ( G, A) \ \
 +
\textrm{ for }  n \geq  1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130170.png" /></td> </tr></table>
+
$$
 +
\widehat{H}  {} ^ {n } ( G, A)  = H _ {- n - 1 }  ( G, A) \  \textrm{ for }  n \leq  - 1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130171.png" /></td> </tr></table>
+
$$
 +
\widehat{H}  {}  ^ {-} 1 ( G, A)  =   \mathop{\rm Ker}  \widehat{N}  _ {G} \  \textrm{ and } \  \widehat{H}  _ {0} ( G, A)  =   \mathop{\rm Coker}  \widehat{N}  _ {G} .
 +
$$
  
For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130172.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130173.png" /> is said to be cohomologically trivial if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130174.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130175.png" /> and all subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130176.png" />. A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130177.png" /> is cohomologically trivial if and only if there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130178.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130179.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130180.png" /> for every subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130181.png" />. Every module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130182.png" /> is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130183.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130184.png" /> (but not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130185.png" />) for all integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130186.png" />. For a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130187.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130188.png" /> the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130189.png" /> are finite.
+
For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A $  G $-
 +
module $  A $
 +
is said to be cohomologically trivial if $  \widehat{H}  {} ^ {n } ( H, A) = 0 $
 +
for all $  n $
 +
and all subgroups $  H \subseteq G $.  
 +
A module $  A $
 +
is cohomologically trivial if and only if there is an $  i $
 +
such that $  \widehat{H}  {}  ^ {i} ( H, A) = 0 $
 +
and $  \widehat{H}  {} ^ {i + 1 } ( H, A) = 0 $
 +
for every subgroup $  H \subseteq G $.  
 +
Every module $  A $
 +
is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define $  \mathop{\rm res} $
 +
and $  \mathop{\rm cores} $(
 +
but not $  \inf $)  
 +
for all integral $  n $.  
 +
For a finitely-generated $  G $-
 +
module $  A $
 +
the groups $  \widehat{H}  {} ^ {n } ( G, A) $
 +
are finite.
  
The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130190.png" /> are annihilated on multiplication by the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130191.png" />, and the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130192.png" />, induced by restrictions, is a monomorphism, where now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130193.png" /> is a Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130194.png" />-subgroup (cf. [[Sylow subgroup|Sylow subgroup]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130195.png" />. A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130196.png" />-groups. The cohomology of cyclic groups has period 2, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130197.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130198.png" />.
+
The groups $  \widehat{H}  {} ^ {n } ( G, A) $
 +
are annihilated on multiplication by the order of $  G $,  
 +
and the mapping $  \widehat{H}  ( G, A) \rightarrow \oplus _ {p} \widehat{H}  {} ^ {n } ( G _ {p} , A) $,  
 +
induced by restrictions, is a monomorphism, where now $  G _ {p} $
 +
is a Sylow $  p $-
 +
subgroup (cf. [[Sylow subgroup|Sylow subgroup]]) of $  G $.  
 +
A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of $  p $-
 +
groups. The cohomology of cyclic groups has period 2, that is, $  \widehat{H}  {} ^ {n } ( G, A) \simeq \widehat{H}  {} ^ {n + 2 } ( G, A) $
 +
for all $  n $.
  
For arbitrary integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130199.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130200.png" /> there is defined a mapping
+
For arbitrary integers $  m $
 +
and $  n $
 +
there is defined a mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130201.png" /></td> </tr></table>
+
$$
 +
\widehat{H}  {} ^ {n } ( G, A) \otimes
 +
\widehat{H}  {}  ^ {m} ( G, B)  \rightarrow \
 +
\widehat{H}  {} ^ {n + m } ( G, A \otimes B),
 +
$$
  
(called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130203.png" />-product, cup-product), where the tensor product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130204.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130205.png" /> is viewed as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130206.png" />-module. In the special case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130207.png" /> is a ring and the operations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130208.png" /> are automorphisms, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130209.png" />-product turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130210.png" /> into a graded ring. The duality theorem for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130212.png" />-products asserts that, for every divisible Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130213.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130214.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130215.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130216.png" />-product
+
(called $  \cup $-
 +
product, cup-product), where the tensor product of $  A $
 +
and $  B $
 +
is viewed as a $  G $-
 +
module. In the special case where $  A $
 +
is a ring and the operations in $  G $
 +
are automorphisms, the $  \cup $-
 +
product turns $  \oplus _ {n} \widehat{H}  {} ^ {n } ( G, A) $
 +
into a graded ring. The duality theorem for $  \cup $-
 +
products asserts that, for every divisible Abelian group $  C $
 +
and every $  G $-
 +
module $  A $,  
 +
the $  \cup $-
 +
product
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130217.png" /></td> </tr></table>
+
$$
 +
\widehat{H}  {} ^ {n } ( G, A) \otimes
 +
\widehat{H}  {} ^ {- n - 1 }
 +
( G,  \mathop{\rm Hom} ( A, C))  \rightarrow \
 +
\widehat{H}  {}  ^ {-} 1 ( G, C)
 +
$$
  
defines a group isomorphism between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130218.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130219.png" /> (see [[#References|[2]]]). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130220.png" />-product is also defined for infinite groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130221.png" /> provided that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130222.png" />.
+
defines a group isomorphism between $  \widehat{H}  {} ^ {n } ( G, A) $
 +
and $  \mathop{\rm Hom} ( \widehat{H}  {} ^ {- n - 1 } ( G,  \mathop{\rm Hom} ( A, C)) , \widehat{H}  {}  ^ {-} 1 ( G, C)) $(
 +
see [[#References|[2]]]). The $  \cup $-
 +
product is also defined for infinite groups $  G $
 +
provided that $  n, m > 0 $.
  
Many problems lead to the necessity of considering the cohomology of a topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130223.png" /> acting continuously on a topological module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130224.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130225.png" /> is a [[Profinite group|profinite group]] (the case nearest to that of finite groups) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130226.png" /> is a discrete Abelian group that is a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130227.png" />-module, one can consider the cohomology groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130228.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130229.png" />, computed in terms of continuous cochains [[#References|[5]]]. These groups can also be defined as the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130230.png" /> with respect to the inflation mapping, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130231.png" /> runs over all open normal subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130232.png" />. This cohomology has all the usual properties of the cohomology of finite groups. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130233.png" /> is a pro-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130234.png" />-group, the dimension over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130235.png" /> of the first and second cohomology groups with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130236.png" /> are interpreted as the minimum number of generators and relations (between these generators) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130237.png" />, respectively.
+
Many problems lead to the necessity of considering the cohomology of a topological group $  G $
 +
acting continuously on a topological module $  A $.  
 +
In particular, if $  G $
 +
is a [[Profinite group|profinite group]] (the case nearest to that of finite groups) and $  A $
 +
is a discrete Abelian group that is a continuous $  G $-
 +
module, one can consider the cohomology groups of $  G $
 +
with coefficients in $  A $,  
 +
computed in terms of continuous cochains [[#References|[5]]]. These groups can also be defined as the limit $  \lim\limits _  \rightarrow  H ^ { n } ( G/U, A  ^ {U} ) $
 +
with respect to the inflation mapping, where $  U $
 +
runs over all open normal subgroups of $  G $.  
 +
This cohomology has all the usual properties of the cohomology of finite groups. If $  G $
 +
is a pro- $  p $-
 +
group, the dimension over $  \mathbf Z /p \mathbf Z $
 +
of the first and second cohomology groups with coefficients in $  \mathbf Z /p \mathbf Z $
 +
are interpreted as the minimum number of generators and relations (between these generators) of $  G $,  
 +
respectively.
  
 
See [[#References|[6]]] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See [[Non-Abelian cohomology|Non-Abelian cohomology]] for cohomology with a non-Abelian coefficient group.
 
See [[#References|[6]]] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See [[Non-Abelian cohomology|Non-Abelian cohomology]] for cohomology with a non-Abelian coefficient group.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) {{MR|}} {{ZBL|0818.18001}} {{ZBL|0328.18009}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967) {{MR|0215665}} {{ZBL|0153.07403}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0180551}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Koch, "Galoissche Theorie der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130238.png" />-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> ''Itogi Nauk. Mat. Algebra. 1964'' (1966) pp. 202–235</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) {{MR|}} {{ZBL|0818.18001}} {{ZBL|0328.18009}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967) {{MR|0215665}} {{ZBL|0153.07403}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0180551}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> ''Itogi Nauk. Mat. Algebra. 1964'' (1966) pp. 202–235</TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
The norm map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130239.png" /> is defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130240.png" /> be a set of representatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130241.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130242.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130243.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130244.png" />. For a definition of the transgression relation in general spectral sequences cf. [[Spectral sequence|Spectral sequence]]; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130245.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130246.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130247.png" />, cf. also [[#References|[a1]]], Chapt. 11, Par. 9.
+
The norm map $  N _ {G/H} : A  ^ {H} \rightarrow A  ^ {G} $
 +
is defined as follows. Let $  g _ {1} \dots g _ {k} $
 +
be a set of representatives of $  G/H $
 +
in $  G $.  
 +
Then  $  N _ {G/H} ( a) = g _ {1} a + \dots + g _ {k} a $
 +
in $  A  ^ {G} $.  
 +
For a definition of the transgression relation in general spectral sequences cf. [[Spectral sequence|Spectral sequence]]; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between $  H ^ { n } ( G, A) $
 +
and $  H ^ { n + 1 } ( G/H, A  ^ {H} ) $
 +
for all $  n > 0 $,  
 +
cf. also [[#References|[a1]]], Chapt. 11, Par. 9.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.S. Brown, "Cohomology of groups" , Springer (1982) {{MR|0672956}} {{ZBL|0584.20036}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.S. Brown, "Cohomology of groups" , Springer (1982) {{MR|0672956}} {{ZBL|0584.20036}} </TD></TR></table>

Latest revision as of 09:48, 26 March 2023


Historically, the earliest theory of a cohomology of algebras.

With every pair $ ( G, A) $, where $ G $ is a group and $ A $ a left $ G $- module (that is, a module over the integral group ring $ \mathbf Z G $), there is associated a sequence of Abelian groups $ H ^ { n } ( G, A) $, called the cohomology groups of $ G $ with coefficients in $ A $. The number $ n $, which runs over the non-negative integers, is called the dimension of $ H ^ { n } ( G, A) $. The cohomology groups of groups are important invariants containing information both on the group $ G $ and on the module $ A $.

By definition, $ H ^ {0} ( G, A) $ is $ \mathop{\rm Hom} _ {G} ( \mathbf Z , A) \simeq A ^ {G} $, where $ A ^ {G} $ is the submodule of $ G $- invariant elements in $ A $. The groups $ H ^ { n } ( G, A) $, $ n > 1 $, are defined as the values of the $ n $- th derived functor of the functor $ A \mapsto H ^ {0} ( G, A) $. Let

$$ \dots \rightarrow ^ { {d _ n} } \ P _ {n} \rightarrow ^ { {d _ {n} - 1 } } \ P _ {n - 1 } \rightarrow \dots \rightarrow \ P _ {0} \rightarrow \mathbf Z \rightarrow 0 $$

be some projective resolution of the trivial $ G $- module $ \mathbf Z $ in the category of $ G $- modules, that is, an exact sequence in which every $ P _ {i} $ is a projective $ \mathbf Z G $- module. Then $ H ^ { n } ( G, A) $ is the $ n $- th cohomology group of the complex

$$ 0 \rightarrow \mathop{\rm Hom} _ {G} ( P _ {0} , A) \rightarrow ^ { {d _ 0} ^ \prime } \ \mathop{\rm Hom} _ {G} ( P _ {1} , A) \rightarrow \dots , $$

where $ d _ {n} ^ { \prime } $ is induced by $ d _ {n} $, that is, $ H ^ { n } ( G, A) = \mathop{\rm Ker} d _ {n} ^ { \prime } / \mathop{\rm Im} d _ {n - 1 } ^ { \prime } $.

The homology groups of a group are defined using the dual construction, in which $ \mathop{\rm Hom} _ {G} $ is replaced everywhere by $ \otimes _ {G} $.

The set of functors $ A \mapsto H ^ { n } ( G, A) $, $ n = 0, 1 \dots $ is a cohomological functor (see Homology functor; Cohomology functor) on the category of left $ G $- modules.

A module of the form $ B = \mathop{\rm Hom} ( \mathbf Z [ G], X) $, where $ X $ is an Abelian group and $ G $ acts on $ B $ according to the formula

$$ ( g \phi ) ( t) = \ \phi ( tg),\ \ \phi \in B,\ \ t \in \mathbf Z G, $$

is said to be co-induced. If $ A $ is injective or co-induced, then $ H ^ { n } ( G, A) = 0 $ for $ n \geq 1 $. Every module $ A $ is isomorphic to a submodule of a co-induced module $ B $. The exact homology sequence for the sequence

$$ 0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0 $$

then defines isomorphisms $ H ^ { n } ( G, B/A) \simeq H ^ { n + 1 } ( G, A) $, $ n \geq 1 $, and an exact sequence

$$ B ^ {G} \rightarrow \ ( B/A) ^ {G} \rightarrow \ H ^ {1} ( G, A) \rightarrow 0. $$

Therefore, the computation of the $ ( n + 1) $- dimensional cohomology group of $ A $ reduces to calculating the $ n $- dimensional cohomology group of $ B/A $. This device is called dimension shifting.

Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors $ A \mapsto H ^ { n } ( G, A) $ from the category of $ G $- modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that $ H ^ { n } ( G, B) = 0 $, $ n \geq 1 $, for every co-induced module $ B $.

The groups $ H ^ { n } ( G, A) $ can also be defined as equivalence classes of exact sequences of $ G $- modules of the form

$$ 0 \rightarrow A \rightarrow M _ {1} \rightarrow \dots \rightarrow M _ {n} \rightarrow \mathbf Z \rightarrow 0 $$

with respect to a suitably defined equivalence relation (see [1], Chapt. 3, 4).

To compute the cohomology groups, the standard resolution of the trivial $ G $- module $ \mathbf Z $ is generally used, in which $ P _ {n} = \mathbf Z [ G ^ {n + 1 } ] $ and, for $ ( g _ {0} \dots g _ {n} ) \in G ^ {n + 1 } $,

$$ d _ {n} ( g _ {0} \dots g _ {n} ) = \ \sum _ {i = 0 } ^ { n } (- 1) ^ {i} ( g _ {0} \dots \widehat{g} _ {i} \dots g _ {n} ), $$

where the symbol $ \widehat{ {}} $ over $ g _ {i} $ means that the term $ g _ {i} $ is omitted. The cochains in $ \mathop{\rm Hom} _ {G} ( P _ {n} , A) $ are the functions $ f ( g _ {0} \dots g _ {n} ) $ for which $ gf ( g _ {0} \dots g _ {n} ) = f ( gg _ {0} \dots gg _ {n} ) $. Changing variables according to the rules $ g _ {0} = 1 $, $ g _ {1} = h _ {1} $, $ g _ {2} = h _ {1} h _ {2} \dots g _ {n} = h _ {1} \dots h _ {n} $, one can go over to inhomogeneous cochains $ f ( h _ {1} \dots h _ {n} ) $. The coboundary operation then acts as follows:

$$ d ^ \prime f ( h _ {1} \dots h _ {n + 1 } ) = \ h _ {1} f ( h _ {2} \dots h _ {n + 1 } ) + $$

$$ + \sum _ {i = 1 } ^ { n } (- 1) ^ {i} f ( h _ {1} \dots h _ {i} h _ {i + 1 } \dots h _ {n + 1 } ) + $$

$$ + (- 1) ^ {n + 1 } f ( h _ {1} \dots h _ {n} ). $$

For example, a one-dimensional cocycle is a function $ f: G \rightarrow A $ for which $ f ( g _ {1} g _ {2} ) = g _ {1} f ( g _ {2} ) + f ( g _ {1} ) $ for all $ g _ {1} , g _ {2} \in G $, and a coboundary is a function of the form $ f ( g) = ga - a $ for some $ a \in A $. A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When $ G $ acts trivially on $ A $, crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, $ H ^ {1} ( G, A) = \mathop{\rm Hom} ( G, A) $ in this case.

The elements of $ H ^ {1} ( G, A) $ can be interpreted as the $ A $- conjugacy classes of sections $ G \rightarrow F $ in the exact sequence $ 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $, where $ F $ is the semi-direct product of $ G $ and $ A $. The elements of $ H ^ {2} ( G, A) $ can be interpreted as classes of extensions of $ A $ by $ G $. Finally, $ H ^ {3} ( G, A) $ can be interpreted as obstructions to extensions of non-Abelian groups $ H $ with centre $ A $ by $ G $( see [1]). For $ n > 3 $, there are no analogous interpretations known (1978) for the groups $ H ^ { n } ( G, A) $.

If $ H $ is a subgroup of $ G $, then restriction of cocycles from $ G $ to $ H $ defines functorial restriction homomorphisms for all $ n $:

$$ \mathop{\rm res} : \ H ^ { n } ( G, A) \rightarrow \ H ^ { n } ( H, A). $$

For $ n = 0 $, $ \mathop{\rm res} $ is just the imbedding $ A ^ {G} \subset A ^ {H} $. If $ G/H $ is some quotient group of $ G $, then lifting cocycles from $ G/H $ to $ G $ induces the functorial inflation homomorphism

$$ \inf : \ H ^ { n } ( G/H,\ A ^ {H} ) \rightarrow \ H ^ { n } ( G, A). $$

Let $ \phi : G ^ \prime \rightarrow G $ be a homomorphism. Then every $ G $- module $ A $ can be regarded as a $ G ^ \prime $- module by setting $ g ^ \prime a = \phi ( g ^ \prime ) a $ for $ g ^ \prime \in G ^ \prime $. Combining the mappings $ \mathop{\rm res} $ and $ \inf $ gives mappings $ H ^ { n } ( G ^ \prime , A) \rightarrow H ^ { n } ( G, A) $. In this sense $ H ^ {*} ( G, A) $ is a contravariant functor of $ G $. If $ \Pi $ is a group of automorphisms of $ G $, then $ H ^ { n } ( G, A) $ can be given the structure of a $ \Pi $- module. For example, if $ H $ is a normal subgroup of $ G $, the groups $ H ^ { n } ( H, A) $ can be equipped with a natural $ G/H $- module structure. This is possible thanks to the fact that inner automorphisms of $ G $ induce the identity mapping on the $ H ^ { n } ( G, A) $. In particular, for a normal subgroup $ H $ in $ G $, $ \mathop{\rm Im} \mathop{\rm res} \subset H ^ { n } ( H, A) ^ {G/H} $.

Let $ H $ be a subgroup of finite index in the group $ G $. Using the norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $, one can use dimension shifting to define the functorial co-restriction mappings for all $ n $:

$$ \mathop{\rm cores} : \ H ^ { n } ( H, A) \rightarrow \ H ^ { n } ( G, A). $$

These satisfy $ \mathop{\rm cores} \cdot \mathop{\rm res} = ( G: H) $.

If $ H $ is a normal subgroup of $ G $ then there exists the Lyndon spectral sequence with second term $ E _ {2} ^ {p,q} = H ^ { p } ( G/H, H ^ { q } ( H, A)) $ converging to the cohomology $ H ^ { n } ( G, A) $( see [1], Chapt. 11). In small dimensions it leads to the exact sequence

$$ 0 \rightarrow H ^ {1} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } \ H ^ {1} ( G, A) \mathop \rightarrow \limits ^ { { \mathop{\rm res}} } \ H ^ {1} ( H, A) ^ {G/H} \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } $$

$$ \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } H ^ {2} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } H ^ {2} ( G, A), $$

where $ \mathop{\rm tr} $ is the transgression mapping.

For a finite group $ G $, the norm map $ N _ {G} : A \rightarrow A $ induces the mapping $ \widehat{N} _ {G} : H _ {0} ( G, A) \rightarrow H ^ {0} ( G, A) $, where $ H _ {0} ( G, A) = A/J _ {G} A $ and $ J _ {G} $ is the ideal of $ \mathbf Z G $ generated by the elements of the form $ g - 1 $, $ g \in G $. The mapping $ N _ {G} $ can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) $ \widehat{H} {} ^ {n } ( G, A) $ for all $ n $. Here

$$ \widehat{H} {} ^ {n } ( G, A) = H ^ { n } ( G, A) \ \ \textrm{ for } n \geq 1, $$

$$ \widehat{H} {} ^ {n } ( G, A) = H _ {- n - 1 } ( G, A) \ \textrm{ for } n \leq - 1, $$

$$ \widehat{H} {} ^ {-} 1 ( G, A) = \mathop{\rm Ker} \widehat{N} _ {G} \ \textrm{ and } \ \widehat{H} _ {0} ( G, A) = \mathop{\rm Coker} \widehat{N} _ {G} . $$

For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A $ G $- module $ A $ is said to be cohomologically trivial if $ \widehat{H} {} ^ {n } ( H, A) = 0 $ for all $ n $ and all subgroups $ H \subseteq G $. A module $ A $ is cohomologically trivial if and only if there is an $ i $ such that $ \widehat{H} {} ^ {i} ( H, A) = 0 $ and $ \widehat{H} {} ^ {i + 1 } ( H, A) = 0 $ for every subgroup $ H \subseteq G $. Every module $ A $ is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define $ \mathop{\rm res} $ and $ \mathop{\rm cores} $( but not $ \inf $) for all integral $ n $. For a finitely-generated $ G $- module $ A $ the groups $ \widehat{H} {} ^ {n } ( G, A) $ are finite.

The groups $ \widehat{H} {} ^ {n } ( G, A) $ are annihilated on multiplication by the order of $ G $, and the mapping $ \widehat{H} ( G, A) \rightarrow \oplus _ {p} \widehat{H} {} ^ {n } ( G _ {p} , A) $, induced by restrictions, is a monomorphism, where now $ G _ {p} $ is a Sylow $ p $- subgroup (cf. Sylow subgroup) of $ G $. A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of $ p $- groups. The cohomology of cyclic groups has period 2, that is, $ \widehat{H} {} ^ {n } ( G, A) \simeq \widehat{H} {} ^ {n + 2 } ( G, A) $ for all $ n $.

For arbitrary integers $ m $ and $ n $ there is defined a mapping

$$ \widehat{H} {} ^ {n } ( G, A) \otimes \widehat{H} {} ^ {m} ( G, B) \rightarrow \ \widehat{H} {} ^ {n + m } ( G, A \otimes B), $$

(called $ \cup $- product, cup-product), where the tensor product of $ A $ and $ B $ is viewed as a $ G $- module. In the special case where $ A $ is a ring and the operations in $ G $ are automorphisms, the $ \cup $- product turns $ \oplus _ {n} \widehat{H} {} ^ {n } ( G, A) $ into a graded ring. The duality theorem for $ \cup $- products asserts that, for every divisible Abelian group $ C $ and every $ G $- module $ A $, the $ \cup $- product

$$ \widehat{H} {} ^ {n } ( G, A) \otimes \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) \rightarrow \ \widehat{H} {} ^ {-} 1 ( G, C) $$

defines a group isomorphism between $ \widehat{H} {} ^ {n } ( G, A) $ and $ \mathop{\rm Hom} ( \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) , \widehat{H} {} ^ {-} 1 ( G, C)) $( see [2]). The $ \cup $- product is also defined for infinite groups $ G $ provided that $ n, m > 0 $.

Many problems lead to the necessity of considering the cohomology of a topological group $ G $ acting continuously on a topological module $ A $. In particular, if $ G $ is a profinite group (the case nearest to that of finite groups) and $ A $ is a discrete Abelian group that is a continuous $ G $- module, one can consider the cohomology groups of $ G $ with coefficients in $ A $, computed in terms of continuous cochains [5]. These groups can also be defined as the limit $ \lim\limits _ \rightarrow H ^ { n } ( G/U, A ^ {U} ) $ with respect to the inflation mapping, where $ U $ runs over all open normal subgroups of $ G $. This cohomology has all the usual properties of the cohomology of finite groups. If $ G $ is a pro- $ p $- group, the dimension over $ \mathbf Z /p \mathbf Z $ of the first and second cohomology groups with coefficients in $ \mathbf Z /p \mathbf Z $ are interpreted as the minimum number of generators and relations (between these generators) of $ G $, respectively.

See [6] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See Non-Abelian cohomology for cohomology with a non-Abelian coefficient group.

References

[1] S. MacLane, "Homology" , Springer (1963) Zbl 0818.18001 Zbl 0328.18009
[2] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305
[3] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1967) MR0215665 Zbl 0153.07403
[4] J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) MR0180551 Zbl 0128.26303
[5] H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)
[6] Itogi Nauk. Mat. Algebra. 1964 (1966) pp. 202–235

Comments

The norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $ is defined as follows. Let $ g _ {1} \dots g _ {k} $ be a set of representatives of $ G/H $ in $ G $. Then $ N _ {G/H} ( a) = g _ {1} a + \dots + g _ {k} a $ in $ A ^ {G} $. For a definition of the transgression relation in general spectral sequences cf. Spectral sequence; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between $ H ^ { n } ( G, A) $ and $ H ^ { n + 1 } ( G/H, A ^ {H} ) $ for all $ n > 0 $, cf. also [a1], Chapt. 11, Par. 9.

References

[a1] K.S. Brown, "Cohomology of groups" , Springer (1982) MR0672956 Zbl 0584.20036
How to Cite This Entry:
Cohomology of groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cohomology_of_groups&oldid=24148
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article