Namespaces
Variants
Actions

Difference between revisions of "Coherent states"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
Certain overcomplete families of vectors (states) in a Hilbert space carrying an irreducible representation of a Lie group. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230301.png" /> be a Lie group and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230302.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230303.png" />, be an irreducible unitary representation acting in a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230304.png" />. Take a fixed vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230305.png" />. Consider the family of all vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230306.png" />. This is a set of coherent vectors. Recall that two vectors (of norm 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230307.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230308.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230309.png" /> define the same (quantum mechanical) state if they differ by a phase factor: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303010.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303011.png" /> be the subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303012.png" /> consisting of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303014.png" />, the isotropy subgroup of the state <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303015.png" />. Then the coherent states <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303016.png" /> are parametrized by the homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303017.png" />.
+
<!--
 +
c0230301.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/C023/C.0203030 Coherent states
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The classical case, which goes back to E. Schrödinger and J. von Neumann, concerns the Heisenberg–Weyl group acting by the usual Schrödinger (or Fock) representation (cf. [[Fock space|Fock space]] and [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]]) with for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303018.png" /> the Fock vacuum. In the case of one degree of freedom (the quantum harmonic oscillator) the Heisenberg–Weyl group can be written <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303020.png" />. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303021.png" /> is the normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303022.png" />, so that the coherent states are parametrized by the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303023.png" />. In von Neumann's use of coherent states to investigate quantum measurements [[#References|[a1]]] overcomplete subsystems of this system indexed by a lattice in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c02303024.png" /> were important. One of the earlier applications of coherent states [[#References|[a2]]], [[#References|[a3]]] was to the description of a coherent laser beam and that is where the name comes from. Since then coherent states have become an important tool in both mathematics (Lie group representations, special functions, theta-functions, reproducing-kernel Hilbert spaces) and in various branches of theoretical physics [[#References|[a4]]], [[#References|[a5]]].
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
Certain overcomplete families of vectors (states) in a Hilbert space carrying an irreducible representation of a Lie group. Let  $  G $
 +
be a Lie group and let  $  T ( g) $,
 +
$  g \in G $,
 +
be an irreducible unitary representation acting in a Hilbert space  $  H $.
 +
Take a fixed vector  $  \psi _ {0} \in H $.
 +
Consider the family of all vectors  $  \psi _ {g} = T ( g) \psi _ {0} $.
 +
This is a set of coherent vectors. Recall that two vectors (of norm 1)  $  \psi _ {1} $
 +
and  $  \psi _ {2} $
 +
of  $  H $
 +
define the same (quantum mechanical) state if they differ by a phase factor:  $  \psi _ {2} =  \mathop{\rm exp} ( ia) \psi _ {1} $.
 +
Let  $  H $
 +
be the subgroup of  $  G $
 +
consisting of all  $  h $
 +
such that  $  T ( h) \psi _ {0} =  \mathop{\rm exp} ( ia ( h)) \psi _ {0} $,
 +
the isotropy subgroup of the state  $  \psi _ {0} $.
 +
Then the coherent states  $  \psi _ {g} $
 +
are parametrized by the homogeneous space  $  G/H $.
 +
 
 +
The classical case, which goes back to E. Schrödinger and J. von Neumann, concerns the Heisenberg–Weyl group acting by the usual Schrödinger (or Fock) representation (cf. [[Fock space|Fock space]] and [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]]) with for $  \psi _ {0} $
 +
the Fock vacuum. In the case of one degree of freedom (the quantum harmonic oscillator) the Heisenberg–Weyl group can be written $  W _ {1} = \{ {( t, \alpha ) } : {t \in \mathbf R,  \alpha \in \mathbf C } \} $,
 +
$  ( t, \alpha ) ( s, \beta ) = ( t + s +  \mathop{\rm Im} ( \alpha \overline \beta \; ), \alpha + \beta ) $.  
 +
In this case $  H $
 +
is the normal subgroup $  \{ ( t, 0) \} $,  
 +
so that the coherent states are parametrized by the plane $  \mathbf C $.  
 +
In von Neumann's use of coherent states to investigate quantum measurements [[#References|[a1]]] overcomplete subsystems of this system indexed by a lattice in $  \mathbf C $
 +
were important. One of the earlier applications of coherent states [[#References|[a2]]], [[#References|[a3]]] was to the description of a coherent laser beam and that is where the name comes from. Since then coherent states have become an important tool in both mathematics (Lie group representations, special functions, theta-functions, reproducing-kernel Hilbert spaces) and in various branches of theoretical physics [[#References|[a4]]], [[#References|[a5]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. von Neumann,  "Mathematische Grundlagen der Quantenmechanik" , Springer  (1932)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.J. Glauber,  "The quantum theory of optical coherence"  ''Phys. Rev.'' , '''130'''  (1963)  pp. 2529–2539</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.J. Glauber,  "Coherent and incoherent states of the radiation field"  ''Phys. Rev.'' , '''131'''  (1963)  pp. 2766–2788</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Perelomov,  "Generalized coherent states and their applications" , Springer  (1986)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J.R. Klander,  B.-S. Skagerstam,  "Coherent states. Applications in physics and mathematical physics" , World Sci.  (1985)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. von Neumann,  "Mathematische Grundlagen der Quantenmechanik" , Springer  (1932)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.J. Glauber,  "The quantum theory of optical coherence"  ''Phys. Rev.'' , '''130'''  (1963)  pp. 2529–2539</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.J. Glauber,  "Coherent and incoherent states of the radiation field"  ''Phys. Rev.'' , '''131'''  (1963)  pp. 2766–2788</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Perelomov,  "Generalized coherent states and their applications" , Springer  (1986)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J.R. Klander,  B.-S. Skagerstam,  "Coherent states. Applications in physics and mathematical physics" , World Sci.  (1985)</TD></TR></table>

Revision as of 17:45, 4 June 2020


Certain overcomplete families of vectors (states) in a Hilbert space carrying an irreducible representation of a Lie group. Let $ G $ be a Lie group and let $ T ( g) $, $ g \in G $, be an irreducible unitary representation acting in a Hilbert space $ H $. Take a fixed vector $ \psi _ {0} \in H $. Consider the family of all vectors $ \psi _ {g} = T ( g) \psi _ {0} $. This is a set of coherent vectors. Recall that two vectors (of norm 1) $ \psi _ {1} $ and $ \psi _ {2} $ of $ H $ define the same (quantum mechanical) state if they differ by a phase factor: $ \psi _ {2} = \mathop{\rm exp} ( ia) \psi _ {1} $. Let $ H $ be the subgroup of $ G $ consisting of all $ h $ such that $ T ( h) \psi _ {0} = \mathop{\rm exp} ( ia ( h)) \psi _ {0} $, the isotropy subgroup of the state $ \psi _ {0} $. Then the coherent states $ \psi _ {g} $ are parametrized by the homogeneous space $ G/H $.

The classical case, which goes back to E. Schrödinger and J. von Neumann, concerns the Heisenberg–Weyl group acting by the usual Schrödinger (or Fock) representation (cf. Fock space and Commutation and anti-commutation relationships, representation of) with for $ \psi _ {0} $ the Fock vacuum. In the case of one degree of freedom (the quantum harmonic oscillator) the Heisenberg–Weyl group can be written $ W _ {1} = \{ {( t, \alpha ) } : {t \in \mathbf R, \alpha \in \mathbf C } \} $, $ ( t, \alpha ) ( s, \beta ) = ( t + s + \mathop{\rm Im} ( \alpha \overline \beta \; ), \alpha + \beta ) $. In this case $ H $ is the normal subgroup $ \{ ( t, 0) \} $, so that the coherent states are parametrized by the plane $ \mathbf C $. In von Neumann's use of coherent states to investigate quantum measurements [a1] overcomplete subsystems of this system indexed by a lattice in $ \mathbf C $ were important. One of the earlier applications of coherent states [a2], [a3] was to the description of a coherent laser beam and that is where the name comes from. Since then coherent states have become an important tool in both mathematics (Lie group representations, special functions, theta-functions, reproducing-kernel Hilbert spaces) and in various branches of theoretical physics [a4], [a5].

References

[a1] J. von Neumann, "Mathematische Grundlagen der Quantenmechanik" , Springer (1932)
[a2] R.J. Glauber, "The quantum theory of optical coherence" Phys. Rev. , 130 (1963) pp. 2529–2539
[a3] R.J. Glauber, "Coherent and incoherent states of the radiation field" Phys. Rev. , 131 (1963) pp. 2766–2788
[a4] A. Perelomov, "Generalized coherent states and their applications" , Springer (1986)
[a5] J.R. Klander, B.-S. Skagerstam, "Coherent states. Applications in physics and mathematical physics" , World Sci. (1985)
How to Cite This Entry:
Coherent states. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Coherent_states&oldid=46384