Namespaces
Variants
Actions

Chebyshev function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

One of the two functions, of a positive argument $x$, defined as follows: $$ \theta(x) = \sum_{p \le x} \log p\,,\ \ \ \psi(x) = \sum_{p^m \le x} \log p \ . $$ The first sum is taken over all prime numbers $p \le x$, and the second over all positive integer powers $m$ of prime numbers $p$ such that $p^m \le x$. The function $\psi(x)$ can be expressed in terms of the Mangoldt function $$ \psi(x) = \sum_{n \le x} \Lambda(n) \ . $$ It follows from the definitions of $\theta(x)$ and $\psi(x)$ that $e^{\theta(x)}$ is equal to the product of all prime numbers $p \le x$, and that the quantity $e^{\psi(x)}$ is equal to the least common multiple of all positive integers $n \le x$. The functions $\theta(x)$ and $\psi(x)$ are related by the identity $$ \psi(x) = \theta(x) + \theta(x^{1/2}) + \theta(x^{1/3}) + \cdots \ . $$

These functions are also closely connected with the function $$ \pi(x) = \sum_{p \le x} 1 $$

which expresses the number of the prime numbers $p \le x$. The prime number theorem may be expressed in the form $\psi(x) \sim 1$.

References

[1] P.L. Chebyshev, "Mémoire sur les nombres premiers" J. Math. Pures Appl. , 17 (1852) pp. 366–390 (Oeuvres, Vol. 1, pp. 51–70)


Comments

For properties of the Chebyshev functions $\theta(x)$ and $\psi(x)$ see [a1], Chapt. 12.

References

[a1] A. Ivic, "The Riemann zeta-function" , Wiley (1985)
How to Cite This Entry:
Chebyshev function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chebyshev_function&oldid=33829
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article