Namespaces
Variants
Actions

Difference between revisions of "Character of a C*-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A non-zero lower semi-continuous semi-finite trace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215402.png" /> on a [[C*-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215403.png" />-algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215404.png" /> satisfying the following condition (cf. [[Trace on a C*-algebra|Trace on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215405.png" />-algebra]]): If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215406.png" /> is a lower semi-continuous semi-finite trace on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215407.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215408.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215409.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154010.png" /> for a certain non-negative number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154011.png" /> and all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154012.png" /> in the closure of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154013.png" /> generated by the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154014.png" />. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154015.png" /> admitting a trace and the set of characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154016.png" /> defined up to a positive multiplier (cf. [[Factor representation|Factor representation]]); this correspondence is established by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154019.png" /> is the factor representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154020.png" /> admitting the trace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154021.png" />. If the trace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154023.png" /> is finite, then the character is said to be finite; a finite character is continuous. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of finite type of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154025.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154026.png" /> and the set of finite characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154027.png" /> with norm 1. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154028.png" /> is commutative, then any character of the commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154029.png" /> is a character of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154030.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154031.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154032.png" /> is the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154033.png" />-algebra of a compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154034.png" />, then the characters of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154035.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154036.png" /> are finite, and to such a character with norm 1 there corresponds a normalized character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154037.png" />.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 
 +
Out of 1 formulas, 1 were replaced by TEX code.-->
 +
 
 +
{{TEX|semi-auto}}{{TEX|done}}
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A non-zero lower semi-continuous semi-finite trace  $  f $
 +
on a [[C*-algebra| $  C  ^ {*} $-
 +
algebra]] $  A $
 +
satisfying the following condition (cf. [[Trace on a C*-algebra|Trace on a $  C  ^ {*} $-
 +
algebra]]): If $  \phi $
 +
is a lower semi-continuous semi-finite trace on $  A $
 +
and if $  \phi ( x) \leq  f ( x) $
 +
for all $  x \in A  ^ {+} $,  
 +
then $  \phi ( x) = \lambda f ( x) $
 +
for a certain non-negative number $  \lambda $
 +
and all elements $  x \in A  ^ {+} $
 +
in the closure of the ideal $  \mathfrak N _ {f} $
 +
generated by the set $  \{ {x } : {x \in A  ^ {+} ,  f ( x) < + \infty } \} $.  
 +
There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of $  A $
 +
admitting a trace and the set of characters of $  A $
 +
defined up to a positive multiplier (cf. [[Factor representation|Factor representation]]); this correspondence is established by the formula $  f ( x) = \chi ( \pi ( x)) $,  
 +
$  x \in A $,  
 +
where $  \pi $
 +
is the factor representation of $  A $
 +
admitting the trace $  \chi $.  
 +
If the trace $  f $
 +
on $  A $
 +
is finite, then the character is said to be finite; a finite character is continuous. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of finite type of a $  C  ^ {*} $-
 +
algebra $  A $
 +
and the set of finite characters of $  A $
 +
with norm 1. If $  A $
 +
is commutative, then any character of the commutative algebra $  A $
 +
is a character of the $  C  ^ {*} $-
 +
algebra $  A $.  
 +
If $  A $
 +
is the group $  C  ^ {*} $-
 +
algebra of a compact group $  G $,  
 +
then the characters of the $  C  ^ {*} $-
 +
algebra $  A $
 +
are finite, and to such a character with norm 1 there corresponds a normalized character of $  G $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Dixmier,   "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154038.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[1]</td> <td valign="top">  J. Dixmier, "$C^*$ algebras" , North-Holland  (1977)  (Translated from French)</td></tr>
 +
</table>

Latest revision as of 14:43, 27 January 2024


A non-zero lower semi-continuous semi-finite trace $ f $ on a $ C ^ {*} $- algebra $ A $ satisfying the following condition (cf. Trace on a $ C ^ {*} $- algebra): If $ \phi $ is a lower semi-continuous semi-finite trace on $ A $ and if $ \phi ( x) \leq f ( x) $ for all $ x \in A ^ {+} $, then $ \phi ( x) = \lambda f ( x) $ for a certain non-negative number $ \lambda $ and all elements $ x \in A ^ {+} $ in the closure of the ideal $ \mathfrak N _ {f} $ generated by the set $ \{ {x } : {x \in A ^ {+} , f ( x) < + \infty } \} $. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of $ A $ admitting a trace and the set of characters of $ A $ defined up to a positive multiplier (cf. Factor representation); this correspondence is established by the formula $ f ( x) = \chi ( \pi ( x)) $, $ x \in A $, where $ \pi $ is the factor representation of $ A $ admitting the trace $ \chi $. If the trace $ f $ on $ A $ is finite, then the character is said to be finite; a finite character is continuous. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of finite type of a $ C ^ {*} $- algebra $ A $ and the set of finite characters of $ A $ with norm 1. If $ A $ is commutative, then any character of the commutative algebra $ A $ is a character of the $ C ^ {*} $- algebra $ A $. If $ A $ is the group $ C ^ {*} $- algebra of a compact group $ G $, then the characters of the $ C ^ {*} $- algebra $ A $ are finite, and to such a character with norm 1 there corresponds a normalized character of $ G $.

References

[1] J. Dixmier, "$C^*$ algebras" , North-Holland (1977) (Translated from French)
How to Cite This Entry:
Character of a C*-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Character_of_a_C*-algebra&oldid=18796
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article