Namespaces
Variants
Actions

Cauchy test

From Encyclopedia of Mathematics
Revision as of 10:19, 16 January 2013 by Nikita2 (talk | contribs) (some TeX)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Cauchy criterion for the convergence of a series: Given a series $\sum_{n=1}^{\infty}u_n$ with non-negative real terms, if there exists a number $q$, $0\leq q<1$, such that, for all sufficiently large $n$, one has the inequality $(u_n)^{1/n}\leq q$, which is equivalent to the condition , then the series is convergent. Conversely, if for all sufficiently large one has the inequality , or even the weaker condition: There exists a subsequence , with terms satisfying the inequality , then the series is divergent.

In particular, if exists and is , then the series is convergent; if it is , then the series is divergent. This was proved by A.L. Cauchy . In the case of a series with terms of arbitrary sign, the condition implies that the series is divergent; if , the series is absolutely convergent.

The integral Cauchy test, or the Cauchy–MacLaurin integral criterion: Given a series with non-negative real terms, if there exists a non-increasing non-negative function , defined for , such that , then the series is convergent if and only if the integral is convergent. This test was first presented in a geometrical form by C. MacLaurin [2], and later rediscovered by A.L. Cauchy [3].

References

[1] A.L. Cauchy, "Analyse algébrique" , Gauthier-Villars (1821) pp. 132–135 (German translation: Springer, 1885)
[2] C. MacLaurin, "Treatise of fluxions" , 1 , Edinburgh (1742) pp. 289–290
[3] A.L. Cauchy, "Sur la convergence des séries" , Oeuvres complètes Ser. 2 , 7 , Gauthier-Villars (1889) pp. 267–279
[4] S.M. Nikol'skii, "A course of mathematical analysis" , 1 , MIR (1977) (Translated from Russian)


Comments

See also Cauchy criteria. The following is also known as Cauchy's condensation test or Cauchy's convergence theorem (criterion): If the terms of a series form a monotone decreasing sequence, then and

are equiconvergent series, i.e. both converge or both diverge (cf. [a1], [a2]).

References

[a1] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
[a2] G.H. Hardy, "A course of pure mathematics" , Cambridge Univ. Press (1975)
How to Cite This Entry:
Cauchy test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cauchy_test&oldid=29316
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article