Namespaces
Variants
Actions

Difference between revisions of "Catalan constant"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎Euler–Mascheroni constant.: moved text to Euler constant)
Line 70: Line 70:
  
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004032.png" /> denotes the familiar [[Riemann zeta-function|Riemann zeta-function]].
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004032.png" /> denotes the familiar [[Riemann zeta-function|Riemann zeta-function]].
 
==Euler–Mascheroni constant.==
 
Another important mathematical constant is the Euler–Mascheroni constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004033.png" /> (which is denoted also by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004034.png" />), defined by
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a12)</td></tr></table>
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004036.png" /></td> </tr></table>
 
 
It is named after L. Euler (1707–1783) and L. Mascheroni (1750–1800). Indeed, one also has
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a13)</td></tr></table>
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004038.png" /></td> </tr></table>
 
 
and
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004039.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a14)</td></tr></table>
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004040.png" /></td> </tr></table>
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004041.png" /></td> </tr></table>
 
 
where an empty sum is interpreted, as usual, to be zero. In terms of the Riemann zeta-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004042.png" />, Euler's classical results state:
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004043.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a15)</td></tr></table>
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004044.png" /></td> </tr></table>
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Erdélyi,  W. Magnus,  F. Oberhettinger,  F.G. Tricomi,  "Higher transcendental functions" , '''I''' , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L. Lewin,  "Polylogarithms and associated functions" , Elsevier  (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.M. Srivastava,  J. Choi,  "Series associated with the zeta and related functions" , Kluwer Acad. Publ.  (2001)</TD></TR></table>
 

Revision as of 19:07, 29 December 2014

Named after its inventor, E.Ch. Catalan (1814–1894), the Catalan constant (which is denoted also by ) is defined by

(a1)

If, in terms of the Digamma (or Psi) function , defined by

(a2)

or

one puts

(a3)

where

then

(a4)

which provides a relationship between the Catalan constant and the Digamma function .

The Catalan constant is related also to other functions, such as the Clausen function , defined by

(a5)

and the Hurwitz zeta-function , which is defined, when , by

(a6)

Thus,

(a7)

Since

(a8)

the last expression in (a7) would follow also from (a4) in light of the definition in (a3).

A fairly large number of integrals and series can be evaluated in terms of the Catalan constant . For example,

(a9)
(a10)

and

(a11)

where denotes the familiar Riemann zeta-function.

How to Cite This Entry:
Catalan constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Catalan_constant&oldid=12431
This article was adapted from an original article by Hari M. Srivastava (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article