Namespaces
Variants
Actions

Difference between revisions of "Cartan-Weyl basis"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Cartan–Weyl basis to Cartan-Weyl basis: ascii title)
(TeX)
 
Line 1: Line 1:
''of a finite-dimensional semi-simple complex Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205801.png" />''
+
{{TEX|done}}
 +
''of a finite-dimensional semi-simple complex Lie algebra $\mathfrak g$''
  
A basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205802.png" /> consisting of elements of a [[Cartan subalgebra|Cartan subalgebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205803.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205804.png" /> and root vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205806.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205807.png" /> is the system of all non-zero roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205808.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c0205809.png" />. The choice of a Cartan–Weyl basis is not unique. A root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058011.png" />, is identified, as a linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058012.png" />, with the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058015.png" /> is the [[Killing form|Killing form]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058016.png" />. Here
+
A basis of $\mathfrak g$ consisting of elements of a [[Cartan subalgebra|Cartan subalgebra]] $\mathfrak t$ of $\mathfrak g$ and root vectors $X_\alpha$, $\alpha\in\Delta$, where $\Delta$ is the system of all non-zero roots of $\mathfrak g$ with respect to $\mathfrak t$. The choice of a Cartan–Weyl basis is not unique. A root $\alpha(h)$, $h\in\mathfrak t$, is identified, as a linear form on $\mathfrak t$, with the vector $h_\alpha'\in\mathfrak t$ such that $\alpha(h)=(h_\alpha',h)$, where $(x,y)$ is the [[Killing form|Killing form]] in $\mathfrak g$. Here
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058017.png" /></td> </tr></table>
+
$$[h,X_\alpha]=(h_\alpha',h)X_\alpha$$
  
for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058018.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058019.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058020.png" /> and the root vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058021.png" /> can be chosen such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058022.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058023.png" />, then
+
for each $h\in\mathfrak t$. If $\alpha\in\Delta$, then $-\alpha\in\Delta$ and the root vectors $X_\alpha$ can be chosen such that $[X_\alpha,X_{-\alpha}]=h_\alpha'$. If $\alpha+\beta\in\Delta$, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058024.png" /></td> </tr></table>
+
$$[X_\alpha,X_\beta]=N_{\alpha\beta}X_{\alpha+\beta},$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058025.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058027.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058028.png" />. There exists a normalization of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058029.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058030.png" />, where the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058031.png" /> obtained are rational. There exists a normalization of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058032.png" /> under which all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058033.png" /> are integers (see [[Chevalley group|Chevalley group]]). The definition of a Cartan–Weyl basis (introduced by H. Weyl in [[#References|[1]]]), as well as everything mentioned above concerning the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058035.png" /> and the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020580/c02058036.png" />, carry over verbatim to the case of an arbitrary finite-dimensional split semi-simple Lie algebra over a field of characteristic zero and its root decomposition with respect to a split Cartan subalgebra.
+
where $N_{\alpha\beta}\neq0$. If $\alpha,\beta,\gamma\in\Delta$, $\alpha+\beta+\gamma=0$, then $N_{\alpha\beta}=N_{\beta\gamma}=N_{\gamma\alpha}$. There exists a normalization of the vectors $X_\alpha$ for which $N_{\alpha\beta}=-N_{-\alpha-\beta}$, where the numbers $N_{\alpha\beta}$ obtained are rational. There exists a normalization of the vectors $X_\alpha$ under which all $N_{\alpha\beta}$ are integers (see [[Chevalley group|Chevalley group]]). The definition of a Cartan–Weyl basis (introduced by H. Weyl in [[#References|[1]]]), as well as everything mentioned above concerning the vectors $X_\alpha$, $h_\alpha'$ and the numbers $N_{\alpha\beta}$, carry over verbatim to the case of an arbitrary finite-dimensional split semi-simple Lie algebra over a field of characteristic zero and its root decomposition with respect to a split Cartan subalgebra.
  
 
====References====
 
====References====

Latest revision as of 10:03, 23 August 2014

of a finite-dimensional semi-simple complex Lie algebra $\mathfrak g$

A basis of $\mathfrak g$ consisting of elements of a Cartan subalgebra $\mathfrak t$ of $\mathfrak g$ and root vectors $X_\alpha$, $\alpha\in\Delta$, where $\Delta$ is the system of all non-zero roots of $\mathfrak g$ with respect to $\mathfrak t$. The choice of a Cartan–Weyl basis is not unique. A root $\alpha(h)$, $h\in\mathfrak t$, is identified, as a linear form on $\mathfrak t$, with the vector $h_\alpha'\in\mathfrak t$ such that $\alpha(h)=(h_\alpha',h)$, where $(x,y)$ is the Killing form in $\mathfrak g$. Here

$$[h,X_\alpha]=(h_\alpha',h)X_\alpha$$

for each $h\in\mathfrak t$. If $\alpha\in\Delta$, then $-\alpha\in\Delta$ and the root vectors $X_\alpha$ can be chosen such that $[X_\alpha,X_{-\alpha}]=h_\alpha'$. If $\alpha+\beta\in\Delta$, then

$$[X_\alpha,X_\beta]=N_{\alpha\beta}X_{\alpha+\beta},$$

where $N_{\alpha\beta}\neq0$. If $\alpha,\beta,\gamma\in\Delta$, $\alpha+\beta+\gamma=0$, then $N_{\alpha\beta}=N_{\beta\gamma}=N_{\gamma\alpha}$. There exists a normalization of the vectors $X_\alpha$ for which $N_{\alpha\beta}=-N_{-\alpha-\beta}$, where the numbers $N_{\alpha\beta}$ obtained are rational. There exists a normalization of the vectors $X_\alpha$ under which all $N_{\alpha\beta}$ are integers (see Chevalley group). The definition of a Cartan–Weyl basis (introduced by H. Weyl in [1]), as well as everything mentioned above concerning the vectors $X_\alpha$, $h_\alpha'$ and the numbers $N_{\alpha\beta}$, carry over verbatim to the case of an arbitrary finite-dimensional split semi-simple Lie algebra over a field of characteristic zero and its root decomposition with respect to a split Cartan subalgebra.

References

[1] H. Weyl, "Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen I" Math. Z. , 23 (1925) pp. 271–309
[2] N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))
[3] N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)


Comments

See also Lie algebra, semi-simple for a description of the special case of a Chevalley basis.

References

[a1] J.-P. Serre, "Algèbres de Lie semi-simples complexes" , Benjamin (1966)
[a2] J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972) pp. §5.4
[a3] R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972)
How to Cite This Entry:
Cartan-Weyl basis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cartan-Weyl_basis&oldid=33105
This article was adapted from an original article by D.P. Zhelobenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article