Namespaces
Variants
Actions

Difference between revisions of "Carlson inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020460/c0204601.png" /> be non-negative numbers, not all zero. Then
+
<!--
 +
c0204601.png
 +
$#A+1 = 7 n = 0
 +
$#C+1 = 7 : ~/encyclopedia/old_files/data/C020/C.0200460 Carlson inequality
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020460/c0204602.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Proved by F. Carlson [[#References|[1]]]. The analogue of the Carlson inequality for integrals is: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020460/c0204603.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020460/c0204604.png" />, then
+
Let  $  \{ {a _ {n} } : {1 \leq  n < \infty } \} $
 +
be non-negative numbers, not all zero. Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020460/c0204605.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{1 }
 +
( \sum a _ {n} ) ^ {4}  < \pi  ^ {2} \sum a _ {n}  ^ {2}  \sum
 +
n  ^ {2} a _ {n}  ^ {2} .
 +
$$
  
The constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020460/c0204606.png" /> is best possible in the sense that there exists a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020460/c0204607.png" /> such that right-hand side of (1) is arbitrarily close to the left-hand side, and there exists a function for which (2) holds with equality.
+
Proved by F. Carlson [[#References|[1]]]. The analogue of the Carlson inequality for integrals is: If  $  f > 0 $,
 +
$  f , x f \in L _ {2} ( 0 , \infty ) $,
 +
then
 +
 
 +
$$ \tag{2 }
 +
\left \{ \int\limits _ { 0 } ^  \infty 
 +
f (x)  d x \right \}  ^ {4}
 +
\leq  \pi  ^ {2} \
 +
\left \{ \int\limits _ { 0 } ^  \infty 
 +
f ^ { 2 } (x)  d x \right \} \
 +
\left \{ \int\limits _ { 0 } ^  \infty 
 +
x  ^ {2} f ^ { 2 } (x)  d x \right \} .
 +
$$
 +
 
 +
The constant  $  \pi  ^ {2} $
 +
is best possible in the sense that there exists a sequence $  \{ a _ {n} \} $
 +
such that right-hand side of (1) is arbitrarily close to the left-hand side, and there exists a function for which (2) holds with equality.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Carlson,  "Une inegalité"  ''Ark. Math. Astron. Fys.'' , '''25B''' :  1  (1934)  pp. 1–5</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  J.E. Littlewood,  G. Pólya,  "Inequalities" , Cambridge Univ. Press  (1934)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Carlson,  "Une inegalité"  ''Ark. Math. Astron. Fys.'' , '''25B''' :  1  (1934)  pp. 1–5</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  J.E. Littlewood,  G. Pólya,  "Inequalities" , Cambridge Univ. Press  (1934)</TD></TR></table>

Latest revision as of 21:32, 2 June 2020


Let $ \{ {a _ {n} } : {1 \leq n < \infty } \} $ be non-negative numbers, not all zero. Then

$$ \tag{1 } ( \sum a _ {n} ) ^ {4} < \pi ^ {2} \sum a _ {n} ^ {2} \sum n ^ {2} a _ {n} ^ {2} . $$

Proved by F. Carlson [1]. The analogue of the Carlson inequality for integrals is: If $ f > 0 $, $ f , x f \in L _ {2} ( 0 , \infty ) $, then

$$ \tag{2 } \left \{ \int\limits _ { 0 } ^ \infty f (x) d x \right \} ^ {4} \leq \pi ^ {2} \ \left \{ \int\limits _ { 0 } ^ \infty f ^ { 2 } (x) d x \right \} \ \left \{ \int\limits _ { 0 } ^ \infty x ^ {2} f ^ { 2 } (x) d x \right \} . $$

The constant $ \pi ^ {2} $ is best possible in the sense that there exists a sequence $ \{ a _ {n} \} $ such that right-hand side of (1) is arbitrarily close to the left-hand side, and there exists a function for which (2) holds with equality.

References

[1] F. Carlson, "Une inegalité" Ark. Math. Astron. Fys. , 25B : 1 (1934) pp. 1–5
[2] G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)
How to Cite This Entry:
Carlson inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carlson_inequality&oldid=17132
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article