Namespaces
Variants
Actions

Carathéodory conditions

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

If one wants to relax the continuity assumption on a function $f$ while preserving the natural equivalence between the Cauchy problem for the differential equation $x ^ { \prime } = f ( t , x )$ and the integral equation which can be obtained by integrating the Cauchy problem, one can follow ideas of C. Carathéodory [a1] and make the following definition.

Let $G \subset {\bf R} ^ { n }$ be an open set and $J = [ a, b ] \subset \mathbf{R}$, $a < b$. One says that $f : J \times G \rightarrow \mathbf{R} ^ { m }$ satisfies the Carathéodory conditions on $J \times G$, written as $f \in \operatorname { Car } ( J \times G )$, if

1) $f (. , x ) : J \rightarrow {\bf R} ^ { m }$ is measurable for every $x \in G$ (cf. also Measurable function);

2) $f ( t , . ) : G \rightarrow \mathbf{R} ^ { m }$ is continuous for almost every $t \in J$;

3) for each compact set $K \subset G$ the function

\begin{equation*} h _ { K } ( t ) = \operatorname { sup } \{ \| f ( t , x ) \| : x \in K \} \end{equation*}

is Lebesgue integrable (cf. also Lebesgue integral) on $J$, where $\| .\|$ is the norm in $\mathbf{R} ^ { m }$.

If $I \subset \mathbf{R}$ is a non-compact interval, one says that $f : I \times G \rightarrow \mathbf{R} ^ { m }$ satisfies the local Carathéodory conditions on $I \times G$ if $f \in \operatorname { Car } ( J \times G )$ for every compact interval $J \subset I$. This is written as $f \in \operatorname { Car } _ { \text{loc} } ( I \times G )$.

Note that any function $g : I \rightarrow {\bf R} ^ { m }$ which is the composition of $f \in \operatorname { Car } _ { \text{loc} } ( I \times G )$ and a measurable function $u : I \rightarrow G$, i.e. $g ( t ) = f ( t , u ( t ) )$ (cf. also Composite function), is measurable on $I$.

To specify the space of the majorant $h _ { K }$ more precisely, one says that $f$ is $L ^ { p }$-Carathéodory, $1 \leq p \leq \infty$, if $f$ satisfies 1)–3) above with $h _ { K } \in L ^ { p } ( J )$.

One can see that any function continuous on $J \times G$ is $L ^ { p }$-Carathéodory for any $p$.

Similarly, one says that $f$ is locally $L ^ { p }$-Carathéodory on $I \times G$ if $f$ restricted to $J \times G$ is $L ^ { p }$-Carathéodory for every compact interval $J \subset I$.

References

[a1] C. Carathéodory, "Vorlesungen über reelle Funktionen" , Dover, reprint (1948)
[a2] E. Coddington, N. Levinson, "The theory of ordinary differential equations" , McGraw-Hill (1955)
[a3] M.A. Krasnoselskij, "Topological methods in the theory of nonlinear integral equations" , Pergamon (1964)
[a4] J. Kurzweil, "Ordinary differential equations" , Elsevier (1986)
[a5] A.F. Filippov, "Differential equations with discontinuous right hand sides" , Kluwer Acad. Publ. (1988)
How to Cite This Entry:
Carathéodory conditions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carath%C3%A9odory_conditions&oldid=55450
This article was adapted from an original article by I. Rachůnková (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article