Namespaces
Variants
Actions

Canonical correlation coefficients

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Maximum values of correlation coefficients between pairs of linear functions

$$ U = \alpha _ {1} X _ {1} + \dots + \alpha _ {s} X _ {s} ,\ \ V = \beta _ {1} X _ {s+1} + \dots + \beta _ {t} X _ {s+t} $$

of two sets of random variables $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $ for which $ U $ and $ V $ are canonical random variables (see Canonical correlation). The problem of determining the maximum correlation coefficient between $ U $ and $ V $ under the conditions $ {\mathsf E} U = {\mathsf E} V = 0 $ and $ {\mathsf E} U ^ {2} = {\mathsf E} V ^ {2} = 1 $ can be solved using Lagrange multipliers. The canonical correlation coefficients are the roots $ \lambda _ {1} \geq \dots \geq \lambda _ {s} > 0 $ of the equation

$$ \left | \begin{array}{cc} - \lambda \Sigma _ {11} &\Sigma _ {12} \\ \Sigma _ {21} &- \lambda \Sigma _ {22} \\ \end{array} \right | = 0 , $$

where $ \Sigma _ {11} $ and $ \Sigma _ {22} $ are the covariance matrices of $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $, respectively, and $ \Sigma _ {12} = \Sigma _ {21} ^ {T} $ is the covariance matrix between the variables of the first and second sets. The $ r $- th root of the equation is called the $ r $- th canonical correlation coefficient between $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $. It is equal to the maximum value of the correlation coefficients between the pair of linear functions $ U ^ {(r)} $ and $ V ^ {(r)} $ of canonical random variables, each of which has variance one and is uncorrelated with the first $ r - 1 $ pairs of variables $ U $ and $ V $. The coefficients $ \alpha ^ {(r)} = ( \alpha _ {1} ^ {(r)} \dots \alpha _ {s} ^ {(r)} ) ^ {T} $, $ \beta ^ {(r)} = ( \beta _ {1} ^ {(r)} \dots \beta _ {t} ^ {(r)} ) ^ {T} $ of $ U ^ {(r)} $ and $ V ^ {(r)} $ satisfy the equation

$$ \left ( \begin{array}{cc} - \lambda \Sigma _ {11} &\Sigma _ {12} \\ \Sigma _ {21} &- \lambda \Sigma _ {22} \\ \end{array} \right ) \left ( \begin{array}{c} \alpha \\ \beta \end{array} \right ) = 0 $$

when $ \lambda = \lambda _ {r} $.

Comments

See also Correlation; Correlation coefficient.

How to Cite This Entry:
Canonical correlation coefficients. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Canonical_correlation_coefficients&oldid=52280
This article was adapted from an original article by I.O. Sarmanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article