Namespaces
Variants
Actions

Difference between revisions of "Canonical correlation coefficients"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing array alignment)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Maximum values of correlation coefficients between pairs of linear functions
+
<!--
 +
c0201401.png
 +
$#A+1 = 31 n = 0
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/C020/C.0200140 Canonical correlation coefficients
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201401.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
of two sets of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201402.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201403.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201404.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201405.png" /> are canonical random variables (see [[Canonical correlation|Canonical correlation]]). The problem of determining the maximum correlation coefficient between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201406.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201407.png" /> under the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201408.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c0201409.png" /> can be solved using Lagrange multipliers. The canonical correlation coefficients are the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014010.png" /> of the equation
+
Maximum values of correlation coefficients between pairs of linear functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014011.png" /></td> </tr></table>
+
$$
 +
= \alpha _ {1} X _ {1} + \dots + \alpha _ {s} X _ {s} ,\ \
 +
= \beta _ {1} X _ {s+1} + \dots + \beta _ {t} X _ {s+t}  $$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014013.png" /> are the covariance matrices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014015.png" />, respectively, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014016.png" /> is the covariance matrix between the variables of the first and second sets. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014017.png" />-th root of the equation is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014019.png" />-th canonical correlation coefficient between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014021.png" />. It is equal to the maximum value of the correlation coefficients between the pair of linear functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014023.png" /> of canonical random variables, each of which has variance one and is uncorrelated with the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014024.png" /> pairs of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014026.png" />. The coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014030.png" /> satisfy the equation
+
of two sets of random variables  $  X _ {1} \dots X _ {s} $
 +
and $  X _ {s+1} \dots X _ {s+t} $
 +
for which  $  U $
 +
and $  V $
 +
are canonical random variables (see [[Canonical correlation|Canonical correlation]]). The problem of determining the maximum correlation coefficient between $  U $
 +
and $  V $
 +
under the conditions  $  {\mathsf E} U = {\mathsf E} V = 0 $
 +
and $  {\mathsf E} U  ^ {2} = {\mathsf E} V  ^ {2} = 1 $
 +
can be solved using Lagrange multipliers. The canonical correlation coefficients are the roots  $  \lambda _ {1} \geq  \dots \geq  \lambda _ {s} > 0 $
 +
of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014031.png" /></td> </tr></table>
+
$$
 +
\left |
 +
\begin{array}{cc}
 +
- \lambda \Sigma _ {11}  &\Sigma _ {12}  \\
 +
\Sigma _ {21}  &- \lambda \Sigma _ {22}  \\
 +
\end{array}
 +
\right |  = 0 ,
 +
$$
  
when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014032.png" />.
+
where  $  \Sigma _ {11} $
 +
and  $  \Sigma _ {22} $
 +
are the covariance matrices of  $  X _ {1} \dots X _ {s} $
 +
and  $  X _ {s+1} \dots X _ {s+t} $,
 +
respectively, and  $  \Sigma _ {12} = \Sigma _ {21}  ^ {T} $
 +
is the covariance matrix between the variables of the first and second sets. The  $  r $-
 +
th root of the equation is called the  $  r $-
 +
th canonical correlation coefficient between  $  X _ {1} \dots X _ {s} $
 +
and  $  X _ {s+1} \dots X _ {s+t} $.  
 +
It is equal to the maximum value of the correlation coefficients between the pair of linear functions  $  U  ^ {(r)} $
 +
and  $  V  ^ {(r)} $
 +
of canonical random variables, each of which has variance one and is uncorrelated with the first  $  r - 1 $
 +
pairs of variables  $  U $
 +
and  $  V $.  
 +
The coefficients  $  \alpha  ^ {(r)} = ( \alpha _ {1}  ^ {(r)} \dots \alpha _ {s}  ^ {(r)} )  ^ {T} $,
 +
$  \beta  ^ {(r)} = ( \beta _ {1}  ^ {(r)} \dots \beta _ {t}  ^ {(r)} )  ^ {T} $
 +
of  $  U  ^ {(r)} $
 +
and  $  V  ^ {(r)} $
 +
satisfy the equation
  
 +
$$
 +
\left (
 +
\begin{array}{cc}
 +
- \lambda \Sigma _ {11}  &\Sigma _ {12}  \\
 +
\Sigma _ {21}  &- \lambda \Sigma _ {22}  \\
 +
\end{array}
 +
\right )
 +
\left ( \begin{array}{c}
 +
\alpha \\
 +
\beta
 +
\end{array}
 +
\right )  =  0
 +
$$
  
 +
when  $  \lambda = \lambda _ {r} $.
  
 
====Comments====
 
====Comments====
 
See also [[Correlation|Correlation]]; [[Correlation coefficient|Correlation coefficient]].
 
See also [[Correlation|Correlation]]; [[Correlation coefficient|Correlation coefficient]].

Latest revision as of 08:00, 25 April 2022


Maximum values of correlation coefficients between pairs of linear functions

$$ U = \alpha _ {1} X _ {1} + \dots + \alpha _ {s} X _ {s} ,\ \ V = \beta _ {1} X _ {s+1} + \dots + \beta _ {t} X _ {s+t} $$

of two sets of random variables $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $ for which $ U $ and $ V $ are canonical random variables (see Canonical correlation). The problem of determining the maximum correlation coefficient between $ U $ and $ V $ under the conditions $ {\mathsf E} U = {\mathsf E} V = 0 $ and $ {\mathsf E} U ^ {2} = {\mathsf E} V ^ {2} = 1 $ can be solved using Lagrange multipliers. The canonical correlation coefficients are the roots $ \lambda _ {1} \geq \dots \geq \lambda _ {s} > 0 $ of the equation

$$ \left | \begin{array}{cc} - \lambda \Sigma _ {11} &\Sigma _ {12} \\ \Sigma _ {21} &- \lambda \Sigma _ {22} \\ \end{array} \right | = 0 , $$

where $ \Sigma _ {11} $ and $ \Sigma _ {22} $ are the covariance matrices of $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $, respectively, and $ \Sigma _ {12} = \Sigma _ {21} ^ {T} $ is the covariance matrix between the variables of the first and second sets. The $ r $- th root of the equation is called the $ r $- th canonical correlation coefficient between $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $. It is equal to the maximum value of the correlation coefficients between the pair of linear functions $ U ^ {(r)} $ and $ V ^ {(r)} $ of canonical random variables, each of which has variance one and is uncorrelated with the first $ r - 1 $ pairs of variables $ U $ and $ V $. The coefficients $ \alpha ^ {(r)} = ( \alpha _ {1} ^ {(r)} \dots \alpha _ {s} ^ {(r)} ) ^ {T} $, $ \beta ^ {(r)} = ( \beta _ {1} ^ {(r)} \dots \beta _ {t} ^ {(r)} ) ^ {T} $ of $ U ^ {(r)} $ and $ V ^ {(r)} $ satisfy the equation

$$ \left ( \begin{array}{cc} - \lambda \Sigma _ {11} &\Sigma _ {12} \\ \Sigma _ {21} &- \lambda \Sigma _ {22} \\ \end{array} \right ) \left ( \begin{array}{c} \alpha \\ \beta \end{array} \right ) = 0 $$

when $ \lambda = \lambda _ {r} $.

Comments

See also Correlation; Correlation coefficient.

How to Cite This Entry:
Canonical correlation coefficients. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Canonical_correlation_coefficients&oldid=12606
This article was adapted from an original article by I.O. Sarmanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article