Namespaces
Variants
Actions

Difference between revisions of "Butcher series"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
(7 intermediate revisions by the same user not shown)
Line 25: Line 25:
  
 
where  $  T $
 
where  $  T $
is the set of rooted trees,  $  a ( t ) \in \mathbf R $
+
is the set of [[rooted tree]]s,  $  a ( t ) \in \mathbf R $
 
is the coefficient for the series associated with the tree  $  t $,  
 
is the coefficient for the series associated with the tree  $  t $,  
 
$  F ( t ) ( y ( x ) ) \in \mathbf R  ^ {d} $
 
$  F ( t ) ( y ( x ) ) \in \mathbf R  ^ {d} $
Line 37: Line 37:
  
 
==Definitions==
 
==Definitions==
A tree is a connected acyclic graph (cf. also [[Graph|Graph]]). A rooted tree is a tree with a distinguished node, called the root (which is drawn at the bottom of the sample trees in the Table). Two rooted trees $ t $
+
A tree is a connected acyclic graph (cf. also [[Graph|Graph]]). A rooted tree is a tree with a distinguished node, called the root (which is drawn at the bottom of the sample trees in the Table). Two rooted trees $t$
and  $ {\widehat{t} $
+
and  $\widehat{t}$
are isomorphic (i.e., equivalent) if and only if there is a [[Bijection|bijection]] $ \sigma $
+
are isomorphic (''i.e.'' equivalent) if and only if there is a [[Bijection|bijection]] $\sigma $
from the nodes of  $ t $
+
from the nodes of  $t$ to the nodes of  $\widehat{t}$
to the nodes of  $ {\widehat{t} $
+
such that  $  \sigma $ maps the root of  $  t $
such that  $  \sigma $
 
maps the root of  $  t $
 
 
to the root of  $  {\widehat{t}  } $
 
to the root of  $  {\widehat{t}  } $
 
and any two nodes  $  n _ {1} $
 
and any two nodes  $  n _ {1} $
and  $  n _ {2} $
+
and  $  n _ {2} $ are connected by an edge in  $  t $
are connected by an edge in  $  t $
 
 
if and only if  $  \sigma ( n _ {1} ) $
 
if and only if  $  \sigma ( n _ {1} ) $
 
and  $  \sigma ( n _ {2} ) $
 
and  $  \sigma ( n _ {2} ) $
 
are connected by an edge in  $  {\widehat{t}  } $.
 
are connected by an edge in  $  {\widehat{t}  } $.
  
The following bracket notation for rooted trees is very useful. Let $  \emptyset $
+
The following bracket notation for rooted trees is very useful. Let $\bullet$
and  $ \bullet $
+
be the tree with one node. For rooted trees  $ t_{1} \dots t _ {m} $
be the trees with zero and one node, respectively. For rooted trees  $ t _ {1} \dots t _ {m} $
 
 
with  $  \rho ( t _ {i} ) \geq  1 $
 
with  $  \rho ( t _ {i} ) \geq  1 $
 
for  $  i = 1 \dots m $,  
 
for  $  i = 1 \dots m $,  
Line 63: Line 59:
 
of  $  t $
 
of  $  t $
 
is isomorphic to  $  t $.  
 
is isomorphic to  $  t $.  
 +
 
The rooted trees with at most four nodes are displayed in the table below.
 
The rooted trees with at most four nodes are displayed in the table below.
  
<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  t _ {0} = $
+
{| class="wikitable"
</td> <td colname="2" style="background-color:white;" colspan="1"> $  \emptyset $
+
|-
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ t _ {1} = $
+
| $t_1$ || $t_2=[t_1]$ || $ t_{3} = [t_{1},t_{1}]$ || $t_4 = [t_2]$  
</td> <td colname="2" style="background-color:white;" colspan="1">
+
|-
 
+
| [[File:Rooted tree 0.svg|50px]] || [[File:Rooted tree 10.svg|50px]] || [[File:Rooted tree 200.svg|100px]]|| [[File:Rooted tree 110.svg|50px]]  
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
+
|-
 
+
|}
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ t _ {2} = [ t _ {1} ] = $
 
</td> <td colname="2" style="background-color:white;" colspan="1">
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
 
 
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ t _ {3} = [ t _ {1} ,t _ {1} ] = $
 
</td> <td colname="2" style="background-color:white;" colspan="1">
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
 
 
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ t _ {4} = [ t _ {2} ] = $
 
</td> <td colname="2" style="background-color:white;" colspan="1">
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
 
 
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  t _ {5} = [ t _ {1} ,t _ {1} ,t _ {1} ] = $
 
</td> <td colname="2" style="background-color:white;" colspan="1">
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
 
 
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  t _ {6} = [ t _ {1} ,t _ {2} ] = $
 
</td> <td colname="2" style="background-color:white;" colspan="1">
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
 
 
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  t _ {7} = [ t _ {3} ] = $
 
</td> <td colname="2" style="background-color:white;" colspan="1">
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
 
 
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  t _ {8} = [ t _ {4} ] = $
 
</td> <td colname="2" style="background-color:white;" colspan="1">
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
  
</td> </tr> </tbody> </table>
+
{| class="wikitable"
 
+
|-
</td></tr> </table>
+
| $t_5 =[t_1,t_1,t_1]$ || $t_6=[t_2,t_1]$ || $ t_{7} = [t_{3}]$ || $  t_{8} = [t_4]$
 +
|-
 +
| [[File:Rooted tree 3000.svg|100px]] || [[File:Rooted tree 2100.svg|100px]] || [[File:Rooted tree 1200.svg|100px]]|| [[File:Rooted tree 1110.svg|50px]]
 +
|-
 +
|}
  
 
Using this bracket notation for rooted trees, one can recursively define elementary differentials, as follows. Let
 
Using this bracket notation for rooted trees, one can recursively define elementary differentials, as follows. Let
Line 156: Line 123:
 
as a Butcher series:
 
as a Butcher series:
  
$$ \tag{a1 }
+
\begin{equation}
 +
\label{eq:1}
 
y ( x + h ) = \sum _ {i = 0 } ^  \infty  y ^ {( i ) } ( x ) {
 
y ( x + h ) = \sum _ {i = 0 } ^  \infty  y ^ {( i ) } ( x ) {
 
\frac{h  ^ {i} }{i! }
 
\frac{h  ^ {i} }{i! }
 
  } =
 
  } =
$$
+
\end{equation}
  
 
$$  
 
$$  
Line 172: Line 140:
 
stage Runge–Kutta formula (cf. [[Runge–Kutta method|Runge–Kutta method]])
 
stage Runge–Kutta formula (cf. [[Runge–Kutta method|Runge–Kutta method]])
  
$$ \tag{a2 }
+
\begin{equation}\label{eq:2}
 
y _ {n + 1 }  = y _ {n} + h \sum _ {i = 1 } ^ { s }  b _ {i} k _ {i} ,
 
y _ {n + 1 }  = y _ {n} + h \sum _ {i = 1 } ^ { s }  b _ {i} k _ {i} ,
$$
+
\end{equation}
  
 
$$  
 
$$  
Line 186: Line 154:
 
can be written as the Butcher series
 
can be written as the Butcher series
  
$$ \tag{a3 }
+
\begin{equation}\label{eq:3}
 
y _ {n + 1 }  = \sum _ {t \in T } \alpha ( t ) \psi ( t ) F ( t ) ( y _ {n} ) {
 
y _ {n + 1 }  = \sum _ {t \in T } \alpha ( t ) \psi ( t ) F ( t ) ( y _ {n} ) {
 
\frac{h ^ {\rho ( t ) } }{\rho ( t ) ! }
 
\frac{h ^ {\rho ( t ) } }{\rho ( t ) ! }
 
  } ,
 
  } ,
$$
+
\end{equation}
  
where the coefficients  $  \psi ( t ) \in \mathbf R $,  
+
where the coefficients  $  \psi(t) \in \mathbf R $,  
defined below, depend only on the rooted tree  $ t $
+
defined below, depend only on the rooted tree  $t$
and the coefficients of the formula (a2).
+
and the coefficients of the formula \eqref{eq:2}.
  
 
To define  $  \psi ( t ) $,  
 
To define  $  \psi ( t ) $,  
Line 217: Line 185:
 
$$
 
$$
  
where the product of  $  \phi $'
+
where the product of  $  \phi $'s in the bracket is taken component-wise. Then
s in the bracket is taken component-wise. Then
 
  
 
$$  
 
$$  
Line 236: Line 203:
 
$$
 
$$
  
where, again, the product of  $  \phi $'
+
where, again, the product of  $  \phi $'s in the bracket is taken componentwise.
s in the bracket is taken componentwise.
 
  
 
Assuming that  $  y ( x ) = y _ {n} $
 
Assuming that  $  y ( x ) = y _ {n} $
Line 243: Line 209:
 
for all trees  $  t $
 
for all trees  $  t $
 
of order  $  \leq  p $,  
 
of order  $  \leq  p $,  
it follows immediately from (a1) and (a3) that
+
it follows immediately from \eqref{eq:1} and \eqref{eq:3} that
  
 
$$  
 
$$  
Line 249: Line 215:
 
$$
 
$$
  
The order of (a2) is the largest such $ p $.
+
The order of \eqref{eq:2} is the largest such $p$.
 +
 
 +
====Algebraic aspects====
 +
 
 +
The Butcher series form a group, as they can be composed. This group is sometimes considered from the viewpoint of its Hopf algebra of functions.
 +
 
 +
The modern understanding of this notion uses the notion of pre-Lie algebras, for the following reasons:
 +
 
 +
- The Lie algebra of analytic vector fields on the affine space $\RR^d$ comes by anti-symmetrization from the pre-Lie product given by the usual torsion-free and flat connection.
 +
 
 +
- The free pre-Lie algebra on one generator can be described as the vector space spanned by rooted trees, under some kind of grafting.
 +
 
 +
Then, by the universal property of free pre-Lie algebras, the choice of any analytic vector field defines uniquely a morphism of pre-Lie algebras, which gives the "elementary differentials" associating a vector field to each rooted tree.
  
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J.C. Butcher,  "The numerical analysis of ordinary differential equations" , Wiley  (1987)</TD></TR>
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J.C. Butcher,  "The numerical analysis of ordinary differential equations" , Wiley  (1987) {{ZBL|0616.65072}}</TD></TR>
<TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Hairer,  S.P. Nørsett,  G. Wanner,  "Solving ordinary differential equations I: nonstiff problems" , Springer  (1987)</TD></TR>
+
<TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Hairer,  S.P. Nørsett,  G. Wanner,  "Solving ordinary differential equations I: nonstiff problems" , Springer  (1987) {{ZBL|0638.65058}}</TD></TR>
 
</table>
 
</table>

Latest revision as of 08:28, 12 November 2023


B-series

Let $ y : \mathbf R \rightarrow {\mathbf R ^ {d} } $ be an analytic function satisfying an ordinary differential equation $ y ^ \prime ( x ) = f ( y ( x ) ) $. A Butcher series for $ y $ is a series of the form

$$ B ( a,y ( x ) ) = \sum _ {t \in T } a ( t ) F ( t ) ( y ( x ) ) { \frac{h ^ {\rho ( t ) } }{\rho ( t ) ! } } , $$

where $ T $ is the set of rooted trees, $ a ( t ) \in \mathbf R $ is the coefficient for the series associated with the tree $ t $, $ F ( t ) ( y ( x ) ) \in \mathbf R ^ {d} $ is the elementary differential associated with the tree $ t $, $ h \in \mathbf R $ is a stepsize or $ x $- increment, and $ \rho ( t ) $, often called the order of the tree $ t $, is the number of nodes in the tree $ t $. All terms will be defined below. For a more thorough discussion of Butcher series, see [a1] or [a2].

Definitions

A tree is a connected acyclic graph (cf. also Graph). A rooted tree is a tree with a distinguished node, called the root (which is drawn at the bottom of the sample trees in the Table). Two rooted trees $t$ and $\widehat{t}$ are isomorphic (i.e. equivalent) if and only if there is a bijection $\sigma $ from the nodes of $t$ to the nodes of $\widehat{t}$ such that $ \sigma $ maps the root of $ t $ to the root of $ {\widehat{t} } $ and any two nodes $ n _ {1} $ and $ n _ {2} $ are connected by an edge in $ t $ if and only if $ \sigma ( n _ {1} ) $ and $ \sigma ( n _ {2} ) $ are connected by an edge in $ {\widehat{t} } $.

The following bracket notation for rooted trees is very useful. Let $\bullet$ be the tree with one node. For rooted trees $ t_{1} \dots t _ {m} $ with $ \rho ( t _ {i} ) \geq 1 $ for $ i = 1 \dots m $, let $ t = [ t _ {1} \dots t _ {m} ] $ be the rooted tree formed by connecting a new root to the roots of each of $ t _ {1} \dots t _ {m} $. Clearly, $ \rho ( t ) = 1 + \sum _ {i = 1 } ^ {m} \rho ( t _ {i} ) $ and any rooted tree formed by permuting the subtrees $ t _ {1} \dots t _ {m} $ of $ t $ is isomorphic to $ t $.

The rooted trees with at most four nodes are displayed in the table below.

$t_1$ $t_2=[t_1]$ $ t_{3} = [t_{1},t_{1}]$ $t_4 = [t_2]$
Rooted tree 0.svg Rooted tree 10.svg Rooted tree 200.svg Rooted tree 110.svg
$t_5 =[t_1,t_1,t_1]$ $t_6=[t_2,t_1]$ $ t_{7} = [t_{3}]$ $ t_{8} = [t_4]$
Rooted tree 3000.svg Rooted tree 2100.svg Rooted tree 1200.svg Rooted tree 1110.svg

Using this bracket notation for rooted trees, one can recursively define elementary differentials, as follows. Let

$$ F ( \emptyset ) ( y ( x ) ) = y ( x ) , \quad F ( \bullet ) ( y ( x ) ) = f ( y ( x ) ) , $$

and, for $ t = [ t _ {1} \dots t _ {m} ] $ with $ \rho ( t _ {i} ) \geq 1 $ for $ i = 1 \dots m $,

$$ F ( t ) ( y ( x ) ) = $$

$$ = f ^ {( m ) } ( y ( x ) ) ( F ( t _ {1} ) ( y ( x ) ) \dots F ( t _ {m} ) ( y ( x ) ) ) , $$

where $ f ^ {( m ) } ( y ( x ) ) $, the $ m $ th derivative of $ f $ with respect to $ y $, is a multi-linear mapping.

Since $ y ( x ) $ satisfies $ y ^ \prime ( x ) = f ( y ( x ) ) $, it is not hard to show that

$$ y ^ {( i ) } ( x ) = \sum _ {t \in T _ {i} } \alpha ( t ) F ( t ) ( y ( x ) ) , $$

where $ y ^ {( i ) } ( x ) $ is the $ i $ th derivative of $ y $ with respect to $ x $, $ T _ {i} = \{ {t \in T } : {\rho ( t ) = i } \} $, and $ \alpha ( t ) $ is the number of distinct ways of labeling the nodes of $ t $ with the integers $ \{ 1 \dots \rho ( t ) \} $ such that the labels increase as you follow any path from the root to a leaf of $ t $. Consequently, one can write the Taylor series for $ y ( x ) $ as a Butcher series:

\begin{equation} \label{eq:1} y ( x + h ) = \sum _ {i = 0 } ^ \infty y ^ {( i ) } ( x ) { \frac{h ^ {i} }{i! } } = \end{equation}

$$ = \sum _ {t \in T } \alpha ( t ) F ( t ) ( y ( x ) ) { \frac{h ^ {\rho ( t ) } }{\rho ( t ) ! } } . $$

The importance of Butcher series stems from their use to derive and to analyze numerical methods for differential equations. For example, consider the $ s $- stage Runge–Kutta formula (cf. Runge–Kutta method)

\begin{equation}\label{eq:2} y _ {n + 1 } = y _ {n} + h \sum _ {i = 1 } ^ { s } b _ {i} k _ {i} , \end{equation}

$$ k _ {i} = f \left ( y _ {n} + h \sum _ {j = 1 } ^ { s } a _ {ij } k _ {j} \right ) , $$

for the ordinary differential equation $ y ^ \prime ( x ) = f ( y ( x ) ) $. Let $ b = ( b _ {1} \dots b _ {s} ) ^ {T} \in \mathbf R ^ {s} $ be the vector of weights and $ A = [ a _ {ij } ] \in \mathbf R ^ {s \times s } $ the coefficient matrix for (a2). Then it can be shown that $ y _ {n + 1 } $ can be written as the Butcher series

\begin{equation}\label{eq:3} y _ {n + 1 } = \sum _ {t \in T } \alpha ( t ) \psi ( t ) F ( t ) ( y _ {n} ) { \frac{h ^ {\rho ( t ) } }{\rho ( t ) ! } } , \end{equation}

where the coefficients $ \psi(t) \in \mathbf R $, defined below, depend only on the rooted tree $t$ and the coefficients of the formula \eqref{eq:2}.

To define $ \psi ( t ) $, first let

$$ \phi ( \emptyset ) = ( 1 \dots 1 ) ^ {T} \in \mathbf R ^ {s} , $$

$$ \phi ( \bullet ) = A \phi ( \emptyset ) , $$

and then, for $ t = [ t _ {1} \dots t _ {m} ] $ with $ \rho ( t _ {i} ) \geq 1 $ for $ i = 1 \dots m $, define $ \phi ( t ) $ recursively by

$$ \phi ( t ) = \rho ( t ) A ( \phi ( t _ {1} ) \dots \phi ( t _ {m} ) ) , $$

where the product of $ \phi $'s in the bracket is taken component-wise. Then

$$ \psi ( \emptyset ) = 1, $$

$$ \psi ( \bullet ) = \sum _ {i = 1 } ^ { s } b _ {i} , $$

and, for $ t = [ t _ {1} \dots t _ {m} ] $ with $ \rho ( t _ {i} ) \geq 1 $ for $ i = 1 \dots m $,

$$ \psi ( t ) = \rho ( t ) b ^ {T} ( \phi ( t _ {1} ) \dots \phi ( t _ {m} ) ) , $$

where, again, the product of $ \phi $'s in the bracket is taken componentwise.

Assuming that $ y ( x ) = y _ {n} $ and that $ \psi ( t ) = 1 $ for all trees $ t $ of order $ \leq p $, it follows immediately from \eqref{eq:1} and \eqref{eq:3} that

$$ y _ {n + 1 } = y ( x + h ) + {\mathcal O} ( h ^ {p + 1 } ) . $$

The order of \eqref{eq:2} is the largest such $p$.

Algebraic aspects

The Butcher series form a group, as they can be composed. This group is sometimes considered from the viewpoint of its Hopf algebra of functions.

The modern understanding of this notion uses the notion of pre-Lie algebras, for the following reasons:

- The Lie algebra of analytic vector fields on the affine space $\RR^d$ comes by anti-symmetrization from the pre-Lie product given by the usual torsion-free and flat connection.

- The free pre-Lie algebra on one generator can be described as the vector space spanned by rooted trees, under some kind of grafting.

Then, by the universal property of free pre-Lie algebras, the choice of any analytic vector field defines uniquely a morphism of pre-Lie algebras, which gives the "elementary differentials" associating a vector field to each rooted tree.

References

[a1] J.C. Butcher, "The numerical analysis of ordinary differential equations" , Wiley (1987) Zbl 0616.65072
[a2] E. Hairer, S.P. Nørsett, G. Wanner, "Solving ordinary differential equations I: nonstiff problems" , Springer (1987) Zbl 0638.65058
How to Cite This Entry:
Butcher series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Butcher_series&oldid=46177
This article was adapted from an original article by K.R. Jackson (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article