Namespaces
Variants
Actions

Difference between revisions of "Brunn-Minkowski theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177201.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177202.png" /> be convex sets in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177203.png" />-dimensional Euclidean space; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177204.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177205.png" />, be the set of points which divide segments with end points at any points of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177206.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177207.png" /> in the ratio <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177208.png" /> (a linear combination of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b0177209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772010.png" />); and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772011.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772012.png" />-th power root of the volume of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772013.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772014.png" /> is a concave function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772015.png" />, i.e. the inequality
+
{{TEX|done}}
 +
Let $K_0$ and $K_1$ be convex sets in an $n$-dimensional Euclidean space; let $K_\lambda$, $\lambda\in[0,1]$, be the set of points which divide segments with end points at any points of the sets $K_0$ and $K_1$ in the ratio $\lambda/(1-\lambda)$ (a linear combination of $K_0$ and $K_1$); and let $V(\lambda)$ be the $n$-th power root of the volume of the set $K_\lambda$. Then $V(\lambda)$ is a concave function of $\lambda$, i.e. the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772016.png" /></td> </tr></table>
+
$$V(\lambda_1(1-\rho)+\lambda_2\rho)\geq(1-\rho)V(\lambda_1)+\rho V(\lambda_2)$$
  
is valid for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772017.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772018.png" /> is linear (and the inequality then becomes an equality) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017720/b01772020.png" /> are homothetic. The Brunn–Minkowski theorem can be generalized to linear combinations of several convex sets. It is used to solve extremal and uniqueness problems. It was discovered by H. Brunn in 1887, and completed and rendered more precise in 1897 by H. Minkowski.
+
is valid for all $\lambda_1,\lambda_2,\rho\in[0,1]$. The function $V(\lambda)$ is linear (and the inequality then becomes an equality) if and only if $K_0$ and $K_1$ are homothetic. The Brunn–Minkowski theorem can be generalized to linear combinations of several convex sets. It is used to solve extremal and uniqueness problems. It was discovered by H. Brunn in 1887, and completed and rendered more precise in 1897 by H. Minkowski.
  
 
====References====
 
====References====

Latest revision as of 11:35, 3 August 2014

Let $K_0$ and $K_1$ be convex sets in an $n$-dimensional Euclidean space; let $K_\lambda$, $\lambda\in[0,1]$, be the set of points which divide segments with end points at any points of the sets $K_0$ and $K_1$ in the ratio $\lambda/(1-\lambda)$ (a linear combination of $K_0$ and $K_1$); and let $V(\lambda)$ be the $n$-th power root of the volume of the set $K_\lambda$. Then $V(\lambda)$ is a concave function of $\lambda$, i.e. the inequality

$$V(\lambda_1(1-\rho)+\lambda_2\rho)\geq(1-\rho)V(\lambda_1)+\rho V(\lambda_2)$$

is valid for all $\lambda_1,\lambda_2,\rho\in[0,1]$. The function $V(\lambda)$ is linear (and the inequality then becomes an equality) if and only if $K_0$ and $K_1$ are homothetic. The Brunn–Minkowski theorem can be generalized to linear combinations of several convex sets. It is used to solve extremal and uniqueness problems. It was discovered by H. Brunn in 1887, and completed and rendered more precise in 1897 by H. Minkowski.

References

[1] H. Busemann, "Convex surfaces" , Interscience (1958)
[2] H. Hadwiger, "Vorlesungen über Inhalt, Oberfläche und Isoperimetrie" , Springer (1957)


Comments

References

[a1] K. Leichtweiss, "Konvexe Mengen" , Springer (1979)
How to Cite This Entry:
Brunn-Minkowski theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brunn-Minkowski_theorem&oldid=22205
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article