Namespaces
Variants
Actions

Difference between revisions of "Bredon theory of modules over a category"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
 
Line 1: Line 1:
A module over a small category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204801.png" /> is a contravariant [[Functor|functor]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204802.png" /> to the [[Category|category]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204803.png" />-modules, for some commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204804.png" /> (cf. also [[Module|Module]]). Taking morphisms to be natural transformations, the category of modules over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204805.png" /> is an [[Abelian category|Abelian category]], so one can do [[Homological algebra|homological algebra]] with these objects.
+
A module over a [[small category]] $\Gamma$ is a contravariant [[functor]] from $\Gamma$ to the [[category]] of $R$-modules, for some commutative ring $R$ (cf. also [[Module]]). Taking morphisms to be natural transformations, the category of modules over $\Gamma$ is an [[Abelian category]], so one can do [[homological algebra]] with these objects.
  
G.E. Bredon introduced modules over a category in [[#References|[a1]]] in order to study obstruction theory for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204806.png" />-spaces. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204807.png" /> is a [[Finite group|finite group]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204808.png" /> be the category of orbits <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b1204809.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048010.png" />-mappings between them. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048011.png" />-modules (Abelian groups) over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048012.png" /> play the role of the coefficients in Bredon's (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048013.png" />-graded) equivariant ordinary cohomology theories. The equivariant ordinary [[Cohomology|cohomology]] of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048014.png" />-CW-complex can be computed using the equivariant chain complex of the space, which is a chain complex in the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048015.png" />-modules over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048016.png" />. Similarly, equivariant local cohomology can be described using modules over a category depending on the space in question.
+
G.E. Bredon introduced modules over a category in [[#References|[a1]]] in order to study obstruction theory for $G$-spaces. If $G$ is a [[finite group]], let $\mathcal{O}_G$ be the category of orbits $G/H$ and $G$-mappings between them. $\mathbf{Z}$-modules (Abelian groups) over $\mathcal{O}_G$ play the role of the coefficients in Bredon's ($\mathbf{Z}$-graded) equivariant ordinary cohomology theories. The equivariant ordinary [[cohomology]] of a $G$-CW-complex can be computed using the equivariant chain complex of the space, which is a chain complex in the category of $\mathbf{Z}$-modules over $\mathcal{O}_G$. Similarly, equivariant local cohomology can be described using modules over a category depending on the space in question.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048017.png" />-graded equivariant ordinary cohomology one has to replace the orbit category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048018.png" /> with the stable orbit category, in which the morphisms are the stable mappings between orbits, stabilization being by all representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048019.png" />. A module over the stable orbit category (i.e., an additive contravariant functor) is equivalent to a Mackey functor as studied by A.W.M. Dress in [[#References|[a3]]].
+
For $RO(G)$-graded equivariant ordinary cohomology one has to replace the orbit category $\mathcal{O}_G$ with the stable orbit category, in which the morphisms are the stable mappings between orbits, stabilization being by all representations of $G$. A module over the stable orbit category (i.e., an additive contravariant functor) is equivalent to a Mackey functor as studied by A.W.M. Dress in [[#References|[a3]]].
  
 
For later examples of the use of modules over a category in equivariant [[Algebraic topology|algebraic topology]], see [[#References|[a4]]] and [[#References|[a6]]]. In particular, [[#References|[a4]]] includes a discussion of the elementary algebra of modules over a category. For examples involving Mackey functors, see [[#References|[a2]]] and [[#References|[a5]]].
 
For later examples of the use of modules over a category in equivariant [[Algebraic topology|algebraic topology]], see [[#References|[a4]]] and [[#References|[a6]]]. In particular, [[#References|[a4]]] includes a discussion of the elementary algebra of modules over a category. For examples involving Mackey functors, see [[#References|[a2]]] and [[#References|[a5]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.E. Bredon,  "Equivariant cohomology theories" , ''Lecture Notes Math.'' , '''34''' , Springer  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. tom Dieck,  "Transformation groups and representation theory" , ''Lecture Notes Math.'' , '''766''' , Springer  (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.W.M. Dress,  "Contributions to the theory of induced representations" , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048020.png" />-theory, II (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)'' , ''Lecture Notes Math.'' , '''342''' , Springer  (1973)  pp. 183–240</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Lück,  "Tranformation groups and algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120480/b12048021.png" />-theory" , ''Lecture Notes Math.'' , '''1408''' , Springer  (1989)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J.P. May,  et al.,  "Equivariant homotopy and cohomology theory" , ''Regional Conf. Ser. Math.'' , '''91''' , Amer. Math. Soc.  (1996)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  I. Moerdijk,  J.A. Svensson,  "The equivariant Serre spectral sequence"  ''Proc. Amer. Math. Soc.'' , '''118'''  (1993)  pp. 263–278</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  G.E. Bredon,  "Equivariant cohomology theories" , ''Lecture Notes Math.'' , '''34''' , Springer  (1967)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  T. tom Dieck,  "Transformation groups and representation theory" , ''Lecture Notes Math.'' , '''766''' , Springer  (1979)</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  A.W.M. Dress,  "Contributions to the theory of induced representations" , ''Algebraic $K$-theory, II (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)'' , ''Lecture Notes Math.'' , '''342''' , Springer  (1973)  pp. 183–240</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Lück,  "Tranformation groups and algebraic $K$-theory" , ''Lecture Notes Math.'' , '''1408''' , Springer  (1989)</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  J.P. May,  et al.,  "Equivariant homotopy and cohomology theory" , ''Regional Conf. Ser. Math.'' , '''91''' , Amer. Math. Soc.  (1996)</TD></TR>
 +
<TR><TD valign="top">[a6]</TD> <TD valign="top">  I. Moerdijk,  J.A. Svensson,  "The equivariant Serre spectral sequence"  ''Proc. Amer. Math. Soc.'' , '''118'''  (1993)  pp. 263–278</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 18:52, 28 October 2016

A module over a small category $\Gamma$ is a contravariant functor from $\Gamma$ to the category of $R$-modules, for some commutative ring $R$ (cf. also Module). Taking morphisms to be natural transformations, the category of modules over $\Gamma$ is an Abelian category, so one can do homological algebra with these objects.

G.E. Bredon introduced modules over a category in [a1] in order to study obstruction theory for $G$-spaces. If $G$ is a finite group, let $\mathcal{O}_G$ be the category of orbits $G/H$ and $G$-mappings between them. $\mathbf{Z}$-modules (Abelian groups) over $\mathcal{O}_G$ play the role of the coefficients in Bredon's ($\mathbf{Z}$-graded) equivariant ordinary cohomology theories. The equivariant ordinary cohomology of a $G$-CW-complex can be computed using the equivariant chain complex of the space, which is a chain complex in the category of $\mathbf{Z}$-modules over $\mathcal{O}_G$. Similarly, equivariant local cohomology can be described using modules over a category depending on the space in question.

For $RO(G)$-graded equivariant ordinary cohomology one has to replace the orbit category $\mathcal{O}_G$ with the stable orbit category, in which the morphisms are the stable mappings between orbits, stabilization being by all representations of $G$. A module over the stable orbit category (i.e., an additive contravariant functor) is equivalent to a Mackey functor as studied by A.W.M. Dress in [a3].

For later examples of the use of modules over a category in equivariant algebraic topology, see [a4] and [a6]. In particular, [a4] includes a discussion of the elementary algebra of modules over a category. For examples involving Mackey functors, see [a2] and [a5].

References

[a1] G.E. Bredon, "Equivariant cohomology theories" , Lecture Notes Math. , 34 , Springer (1967)
[a2] T. tom Dieck, "Transformation groups and representation theory" , Lecture Notes Math. , 766 , Springer (1979)
[a3] A.W.M. Dress, "Contributions to the theory of induced representations" , Algebraic $K$-theory, II (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) , Lecture Notes Math. , 342 , Springer (1973) pp. 183–240
[a4] W. Lück, "Tranformation groups and algebraic $K$-theory" , Lecture Notes Math. , 1408 , Springer (1989)
[a5] J.P. May, et al., "Equivariant homotopy and cohomology theory" , Regional Conf. Ser. Math. , 91 , Amer. Math. Soc. (1996)
[a6] I. Moerdijk, J.A. Svensson, "The equivariant Serre spectral sequence" Proc. Amer. Math. Soc. , 118 (1993) pp. 263–278
How to Cite This Entry:
Bredon theory of modules over a category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bredon_theory_of_modules_over_a_category&oldid=39510
This article was adapted from an original article by S.R. Costenoble (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article