Namespaces
Variants
Actions

Brauer-Severi variety

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An algebraic variety over a field $ k $ that, if considered over the algebraic closure $ \overline{k} $ of $ k $, becomes isomorphic to a projective space.

The arithmetic properties of such varieties were studied in 1932 by F. Severi; F. Châtelet subsequently discovered a connection between Brauer–Severi varieties and central simple algebras (cf. Central simple algebra) over $ k $ and the Brauer group.

The simplest non-trivial example of a one-dimensional Brauer–Severi variety is the projective conic section $ Q $:

$$ x _ {0} ^ {2} + x _ {1} ^ {2} + x _ {2} ^ {2} = 0 $$

on the real projective plane $ \mathbf P _ {\mathbf R } ^ {2} $. Over the field of complex numbers $ \mathbf C $ this variety is isomorphic to the projective line $ \mathbf P _ {\mathbf C } ^ {1} $. The set of all one-dimensional Brauer–Severi varieties, considered up to isomorphism, is in a one-to-one correspondence with the set of projective non-degenerate conic sections (considered up to projective equivalence over $ k $), which is in turn in a one-to-one correspondence with the set of non-isomorphic generalized quaternion algebras over $ k $. In the above example the conical section $ Q $ corresponds to the algebra of ordinary quaternions.

In the more-dimensional case, the set of classes of $ n $-dimensional Brauer–Severi varieties (i.e. Brauer–Severi varieties distinguished up to $ k $-isomorphism) may be identified with the Galois cohomology group $ H ^ {1} (k, \mathop{\rm PGL} (n + 1, k)) $ where $ \mathop{\rm PGL} (n + 1, k) $ is the projective group of automorphisms of the projective space $ \mathbf{ P } _ {k} ^ {n} $[3], [4]. This cohomology group describes the classes of $ k $-isomorphic central simple $ k $-algebras of rank $ (n + 1) ^ {2} $ (i.e. forms of the matrix algebra $ M _ {n+1} (k) $). The connection between Brauer–Severi varieties and central simple algebras is more explicitly described as follows. To a $ k $-algebra $ A $ of rank $ r ^ {2} $ one associates the variety $ X $ of its left ideals of rank $ r $, which is defined as a closed subvariety of the Grassmann manifold of all $ k $-linear subspaces of dimension $ r $ in $ A $. In certain cases the variety $ X $ may be defined by norm equations — e.g. in the case of quaternion algebras. The connection between Brauer–Severi varieties and algebras is taken advantage of in the study of both [1], [4].

The most significant properties of Brauer–Severi varieties are the following. A Brauer–Severi variety is $ k $-isomorphic to a projective space $ \mathbf P _ {k} ^ {n} $ if and only if it has a point in the field $ k $. All Brauer–Severi varieties have a point in some finite separable extension $ K $ of $ k $[1].

The Hasse principle applies to Brauer–Severi varieties defined over an algebraic number field.

The field of rational functions $ k(X) $ on a Brauer–Severi variety $ X $ is the splitting field of the corresponding algebra $ A $; moreover, an arbitrary extension $ K $ of $ k $ is the splitting field for $ A $ if and only if $ X $ has a $ K $-point [4].

In the context of the generalization of the concepts of a central simple algebra and the Brauer group to include schemes, the Brauer–Severi varieties were generalized to the concept of Brauer–Severi schemes [2]. Let $ f: P \rightarrow X $ be a morphism of schemes. A scheme $ P $ is called a Brauer–Severi scheme if it is locally isomorphic to a projective space $ {\mathbf P } _ {X} ^ {n} $ over $ X $ in the étale topology of $ X $. A scheme $ P $ over a scheme $ X $ is a Brauer–Severi scheme if and only if $ f: P \rightarrow X $ is a finitely-presented proper flat morphism and if all of its geometrical fibres are isomorphic to projective spaces [2].

References

[1] F. Châtelet, "Variations sur un thème de H. Poincaré" Ann. Sci. École Norm. Sup. (3) , 61 (1944) pp. 249–300
[2] A. Grothendieck, "Le groupe de Brauer" A. Grothendieck (ed.) J. Giraud (ed.) et al. (ed.) , Dix exposés sur la cohomologie des schémas , North-Holland & Masson (1968) pp. 1–21
[3] J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964)
[4] P. Roguette, "On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras" Math. Ann. , 150 (1963) pp. 411–439

Comments

Thus a Brauer–Severi variety of dimension $ n $ is a $ \overline{k} /k $-form of $ \mathbf P _ {k} ^ {n} $.

How to Cite This Entry:
Brauer-Severi variety. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brauer-Severi_variety&oldid=51882
This article was adapted from an original article by V.A. Iskovskikh (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article