Namespaces
Variants
Actions

Difference between revisions of "Branch of an analytic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
 
Line 1: Line 1:
 
The result of [[Analytic continuation|analytic continuation]] of a given element of an analytic function represented by a power series
 
The result of [[Analytic continuation|analytic continuation]] of a given element of an analytic function represented by a power series
 +
$$
 +
\Pi(a;r) = \sum_{\nu=0}^\infty c_\nu (z-a)^\nu
 +
$$
 +
with centre $a$ and radius of convergence $r>0$ along all possible paths belonging to a given domain $D$ of the complex plane $\mathbf{C}$, $a \in D$. Thus, a branch of an analytic function is defined by the element $\Pi(a;r)$ and by the domain $D$. In calculations one usually employs only single-valued, or regular, branches of analytic functions, which need not exist for every domain $D$ belonging to the domain of existence of the [[complete analytic function]]. For instance, in the cut complex plane $D = \mathbf{C} \setminus \{ z = x : -\infty < x \le 0 \}$ the multi-valued analytic function $w = \mathrm{Ln}(z)$ has the regular branch
 +
$$
 +
w = \mathrm{Ln}(z) = \ln |z| + i \arg z\,,\ \ \ |\arg z| < \pi
 +
$$
 +
which is the principal value of the logarithm, whereas in the annulus $D = \{ z : 1 < |z| < 2 \}$ it is impossible to isolate a regular branch of the analytic function $w = \mathrm{Ln}(z)$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174901.png" /></td> </tr></table>
+
====References====
 +
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' Chapt. 3; 2, Chapt. 4 , Springer  (1964)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''2''' , Chelsea  (1977)  (Translated from Russian)</TD></TR>
 +
</table>
  
with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174902.png" /> and radius of convergence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174903.png" /> along all possible paths belonging to a given domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174904.png" /> of the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174905.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174906.png" />. Thus, a branch of an analytic function is defined by the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174907.png" /> and by the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174908.png" />. In calculations one usually employs only single-valued, or regular, branches of analytic functions, which exist not for all domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b0174909.png" /> belonging to the domain of existence of the [[Complete analytic function|complete analytic function]]. For instance, in the cut complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b01749010.png" /> the multi-valued analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b01749011.png" /> has the regular branch
+
{{TEX|done}}
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b01749012.png" /></td> </tr></table>
 
 
 
which is the principal value of the logarithm, whereas in the annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b01749013.png" /> it is impossible to isolate a regular branch of the analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017490/b01749014.png" />.
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1 Chapt. 3; 2, Chapt. 4''' , Springer  (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''2''' , Chelsea  (1977)  (Translated from Russian)</TD></TR></table>
 

Latest revision as of 21:25, 13 December 2016

The result of analytic continuation of a given element of an analytic function represented by a power series $$ \Pi(a;r) = \sum_{\nu=0}^\infty c_\nu (z-a)^\nu $$ with centre $a$ and radius of convergence $r>0$ along all possible paths belonging to a given domain $D$ of the complex plane $\mathbf{C}$, $a \in D$. Thus, a branch of an analytic function is defined by the element $\Pi(a;r)$ and by the domain $D$. In calculations one usually employs only single-valued, or regular, branches of analytic functions, which need not exist for every domain $D$ belonging to the domain of existence of the complete analytic function. For instance, in the cut complex plane $D = \mathbf{C} \setminus \{ z = x : -\infty < x \le 0 \}$ the multi-valued analytic function $w = \mathrm{Ln}(z)$ has the regular branch $$ w = \mathrm{Ln}(z) = \ln |z| + i \arg z\,,\ \ \ |\arg z| < \pi $$ which is the principal value of the logarithm, whereas in the annulus $D = \{ z : 1 < |z| < 2 \}$ it is impossible to isolate a regular branch of the analytic function $w = \mathrm{Ln}(z)$.

References

[1] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 1 Chapt. 3; 2, Chapt. 4 , Springer (1964)
[2] A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian)
How to Cite This Entry:
Branch of an analytic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branch_of_an_analytic_function&oldid=16288
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article