Namespaces
Variants
Actions

Difference between revisions of "Boyd index"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The lower and upper Boyd indices of a rearrangement-invariant function space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108101.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108102.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108103.png" /> are defined by the respective formulas [[#References|[a1]]]
+
<!--
 +
b1108101.png
 +
$#A+1 = 43 n = 0
 +
$#C+1 = 43 : ~/encyclopedia/old_files/data/B110/B.1100810 Boyd index
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108104.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The lower and upper Boyd indices of a rearrangement-invariant function space  $  X $
 +
on  $  [ 0, \infty ) $
 +
or  $  [ 0,1 ] $
 +
are defined by the respective formulas [[#References|[a1]]]
 +
 
 +
$$
 +
\alpha _ {X} = {\lim\limits } _ {t \rightarrow 0 } {
 +
\frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t }
 +
}
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108105.png" /></td> </tr></table>
+
$$
 +
\beta _ {X} = {\lim\limits } _ {t \rightarrow \infty } {
 +
\frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t }
 +
} .
 +
$$
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108107.png" />, is the dilation operator, i.e.
+
Here $  D _ {t} $,
 +
$  t > 0 $,  
 +
is the dilation operator, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108108.png" /></td> </tr></table>
+
$$
 +
D _ {t} f ( x ) = f \left ( {
 +
\frac{x}{t}
 +
} \right ) ,
 +
$$
  
for a [[Measurable function|measurable function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108109.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081010.png" />, while for an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081011.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081012.png" />,
+
for a [[Measurable function|measurable function]] $  f $
 +
on $  [ 0, \infty ) $,
 +
while for an $  f $
 +
on $  [ 0,1 ] $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081013.png" /></td> </tr></table>
+
$$
 +
D _ {t} f ( x ) = \left \{
 +
\begin{array}{l}
 +
{f ( {
 +
\frac{x}{t}
 +
} ) \  \textrm{ if  }  x \leq  { \mathop{\rm min} } ( 1,t ) , } \\
 +
{0 \  \textrm{ if  }  t < x \leq  1. }
 +
\end{array}
 +
\right .
 +
$$
  
This operator is bounded in every rearrangement-invariant space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081014.png" /> and the expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081015.png" /> is its norm in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081016.png" />. The limits exist and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081017.png" />. Sometimes the indices are taken in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081019.png" /> [[#References|[a2]]].
+
This operator is bounded in every rearrangement-invariant space $  X $
 +
and the expression $  \| {D _ {t} } \| _ {X} $
 +
is its norm in $  X $.  
 +
The limits exist and 0 \leq  \alpha _ {X} \leq  \beta _ {X} \leq  1 $.  
 +
Sometimes the indices are taken in the form $  p _ {X} = {1 / {\beta _ {X} } } $
 +
and $  q _ {X} = {1 / {\alpha _ {X} } } $[[#References|[a2]]].
  
There are many applications of Boyd indices. The first one was made by D.W. Boyd [[#References|[a1]]], who proved an interpolation theorem which gives, in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081021.png" />, the conditions for a [[Linear operator|linear operator]] of a weak type to be bounded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081022.png" /> (cf. also [[Interpolation of operators|Interpolation of operators]]).
+
There are many applications of Boyd indices. The first one was made by D.W. Boyd [[#References|[a1]]], who proved an interpolation theorem which gives, in terms of $  \alpha _ {X} $
 +
and $  \beta _ {X} $,  
 +
the conditions for a [[Linear operator|linear operator]] of a weak type to be bounded in $  X $(
 +
cf. also [[Interpolation of operators|Interpolation of operators]]).
  
A necessary and sufficient condition for some classical operators to be bounded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081023.png" /> may be also obtained in terms of Boyd indices. For example, the Hardy–Littlewood operator
+
A necessary and sufficient condition for some classical operators to be bounded in $  X $
 +
may be also obtained in terms of Boyd indices. For example, the Hardy–Littlewood operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081024.png" /></td> </tr></table>
+
$$
 +
Hf ( x ) = {
 +
\frac{1}{x}
 +
} \int\limits _ { 0 } ^ { x }  {f ( t ) }  {dt }
 +
$$
  
is bounded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081025.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081026.png" /> [[#References|[a3]]].
+
is bounded in $  X $
 +
if and only if $  \beta _ {X} < 1 $[[#References|[a3]]].
  
An important property of the class of rearrangement-invariant spaces with non-trivial Boyd indices was discovered in [[#References|[a4]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081027.png" /> be a rearrangement-invariant space on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081028.png" /> and denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081029.png" /> the space of all measurable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081030.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081033.png" /> is the decreasing rearrangement (cf. also [[Marcinkiewicz space|Marcinkiewicz space]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081035.png" /> denotes the indicator of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081036.png" />. Put
+
An important property of the class of rearrangement-invariant spaces with non-trivial Boyd indices was discovered in [[#References|[a4]]]. Let $  X $
 +
be a rearrangement-invariant space on $  [ 0,1 ] $
 +
and denote by $  Y $
 +
the space of all measurable functions on $  [ 0, \infty ) $
 +
such that $  f  ^ {*} \chi _ {[ 0,1 ] }  \in X $
 +
and $  f  ^ {*} \chi _ {( 1, \infty ) }  \in L _ {2} ( 1, \infty ) $,  
 +
where $  f  ^ {*} $
 +
is the decreasing rearrangement (cf. also [[Marcinkiewicz space|Marcinkiewicz space]]) of $  | f | $
 +
and $  \chi _ {A} $
 +
denotes the indicator of the set $  A $.  
 +
Put
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081037.png" /></td> </tr></table>
+
$$
 +
\left \| f \right \| _ {Y} =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081038.png" /></td> </tr></table>
+
$$
 +
=  
 +
\max  \left \{ \left \| {f  ^ {*} \chi _ {[ 0,1 ] }  } \right \| _ {X} , \left ( \sum _ {k = 0 } ^  \infty  \left ( \int\limits _ { k } ^ { {k }  + 1 } {f  ^ {*} ( x ) }  {dx } \right )  ^ {2} \right ) ^ {1/2 } \right \} .
 +
$$
  
If the strong inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081039.png" /> take place, then the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081041.png" /> are isomorphic. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081042.png" /> admits a representation as a rearrangement-invariant space on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b11081043.png" />.
+
If the strong inequalities $  0 < \alpha _ {X} \leq  \beta _ {X} < 1 $
 +
take place, then the spaces $  X $
 +
and $  Y $
 +
are isomorphic. In other words, $  X $
 +
admits a representation as a rearrangement-invariant space on $  [ 0, \infty ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.W. Boyd,  "Indices of function spaces and their relationship to interpolation"  ''Canadian J. Math.'' , '''21'''  (1969)  pp. 1245–1254</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Lindenstrauss,  L. Tzafriri,  "Classical Banach spaces" , '''II. Function spaces''' , Springer  (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S.G. Krein,  E.M. Semenov,  Yu.I. Petunin,  "Interpolation of linear operators" , ''Transl. Math. Monograph'' , '''54''' , Amer. Math. Soc.  (1982)  (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W.B. Johnson,  B. Maurey,  G. Schechtman,  L. Tzafriri,  "Symmetric structures in Banach spaces" , ''Memoirs'' , '''217''' , Amer. Math. Soc.  (1979)  pp. 1–298</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.W. Boyd,  "Indices of function spaces and their relationship to interpolation"  ''Canadian J. Math.'' , '''21'''  (1969)  pp. 1245–1254</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Lindenstrauss,  L. Tzafriri,  "Classical Banach spaces" , '''II. Function spaces''' , Springer  (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S.G. Krein,  E.M. Semenov,  Yu.I. Petunin,  "Interpolation of linear operators" , ''Transl. Math. Monograph'' , '''54''' , Amer. Math. Soc.  (1982)  (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W.B. Johnson,  B. Maurey,  G. Schechtman,  L. Tzafriri,  "Symmetric structures in Banach spaces" , ''Memoirs'' , '''217''' , Amer. Math. Soc.  (1979)  pp. 1–298</TD></TR></table>

Latest revision as of 06:29, 30 May 2020


The lower and upper Boyd indices of a rearrangement-invariant function space $ X $ on $ [ 0, \infty ) $ or $ [ 0,1 ] $ are defined by the respective formulas [a1]

$$ \alpha _ {X} = {\lim\limits } _ {t \rightarrow 0 } { \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } } $$

and

$$ \beta _ {X} = {\lim\limits } _ {t \rightarrow \infty } { \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } } . $$

Here $ D _ {t} $, $ t > 0 $, is the dilation operator, i.e.

$$ D _ {t} f ( x ) = f \left ( { \frac{x}{t} } \right ) , $$

for a measurable function $ f $ on $ [ 0, \infty ) $, while for an $ f $ on $ [ 0,1 ] $,

$$ D _ {t} f ( x ) = \left \{ \begin{array}{l} {f ( { \frac{x}{t} } ) \ \textrm{ if } x \leq { \mathop{\rm min} } ( 1,t ) , } \\ {0 \ \textrm{ if } t < x \leq 1. } \end{array} \right . $$

This operator is bounded in every rearrangement-invariant space $ X $ and the expression $ \| {D _ {t} } \| _ {X} $ is its norm in $ X $. The limits exist and $ 0 \leq \alpha _ {X} \leq \beta _ {X} \leq 1 $. Sometimes the indices are taken in the form $ p _ {X} = {1 / {\beta _ {X} } } $ and $ q _ {X} = {1 / {\alpha _ {X} } } $[a2].

There are many applications of Boyd indices. The first one was made by D.W. Boyd [a1], who proved an interpolation theorem which gives, in terms of $ \alpha _ {X} $ and $ \beta _ {X} $, the conditions for a linear operator of a weak type to be bounded in $ X $( cf. also Interpolation of operators).

A necessary and sufficient condition for some classical operators to be bounded in $ X $ may be also obtained in terms of Boyd indices. For example, the Hardy–Littlewood operator

$$ Hf ( x ) = { \frac{1}{x} } \int\limits _ { 0 } ^ { x } {f ( t ) } {dt } $$

is bounded in $ X $ if and only if $ \beta _ {X} < 1 $[a3].

An important property of the class of rearrangement-invariant spaces with non-trivial Boyd indices was discovered in [a4]. Let $ X $ be a rearrangement-invariant space on $ [ 0,1 ] $ and denote by $ Y $ the space of all measurable functions on $ [ 0, \infty ) $ such that $ f ^ {*} \chi _ {[ 0,1 ] } \in X $ and $ f ^ {*} \chi _ {( 1, \infty ) } \in L _ {2} ( 1, \infty ) $, where $ f ^ {*} $ is the decreasing rearrangement (cf. also Marcinkiewicz space) of $ | f | $ and $ \chi _ {A} $ denotes the indicator of the set $ A $. Put

$$ \left \| f \right \| _ {Y} = $$

$$ = \max \left \{ \left \| {f ^ {*} \chi _ {[ 0,1 ] } } \right \| _ {X} , \left ( \sum _ {k = 0 } ^ \infty \left ( \int\limits _ { k } ^ { {k } + 1 } {f ^ {*} ( x ) } {dx } \right ) ^ {2} \right ) ^ {1/2 } \right \} . $$

If the strong inequalities $ 0 < \alpha _ {X} \leq \beta _ {X} < 1 $ take place, then the spaces $ X $ and $ Y $ are isomorphic. In other words, $ X $ admits a representation as a rearrangement-invariant space on $ [ 0, \infty ) $.

References

[a1] D.W. Boyd, "Indices of function spaces and their relationship to interpolation" Canadian J. Math. , 21 (1969) pp. 1245–1254
[a2] J. Lindenstrauss, L. Tzafriri, "Classical Banach spaces" , II. Function spaces , Springer (1979)
[a3] S.G. Krein, E.M. Semenov, Yu.I. Petunin, "Interpolation of linear operators" , Transl. Math. Monograph , 54 , Amer. Math. Soc. (1982) (In Russian)
[a4] W.B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, "Symmetric structures in Banach spaces" , Memoirs , 217 , Amer. Math. Soc. (1979) pp. 1–298
How to Cite This Entry:
Boyd index. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boyd_index&oldid=16880
This article was adapted from an original article by M. Braverman (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article