Namespaces
Variants
Actions

Borel strong law of large numbers

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 60F15 [MSN][ZBL]

Historically, the first variant of the strong law of large numbers, formulated and proved by E. Borel [B] in the context of the Bernoulli scheme (cf. Bernoulli trials). Consider independent random variables $X_1,\ldots,X_n,\ldots$ which are identically distributed and assume one of two values 0 and 1 with probability of 1/2 each; the expression $S_n = \sum_{k=1}^n X_k$ will then give the number of successful trials in a Bernoulli scheme in which the probability of success is 1/2. Borel [B] showed that $$ \frac{S_n}{n} \rightarrow \frac12 $$ with probability one as $n \rightarrow \infty$. It was subsequently (1914) shown by G.H. Hardy and J.E. Littlewood that, almost certainly, $$ \limsup_{n \rightarrow \infty} \frac{ \left\vert{ \frac{S_n}{n} - \frac12 }\right\vert }{ \sqrt{n \log n} } < \frac{1}{\sqrt2} $$ after which (1922) the stronger result: $$ \mathrm{Prob}\left[{ \limsup_{n \rightarrow \infty} \frac{ \left\vert{ \frac{S_n}{n} - \frac12 }\right\vert }{ \sqrt{n \log\log n} } = \frac{1}{\sqrt2} }\right] = 1 $$ was proved by A.Ya. Khinchin. See also Law of the iterated logarithm.

References

[B] E. Borel, "Les probabilités dénombrables et leurs applications arithmetique" Rend. Circ. Mat. Palermo (2) , 27 (1909) pp. 247–271
[K] M. Kac, "Statistical independence in probability, analysis and number theory" , Math. Assoc. Amer. (1963) MR1530983 MR0110114 Zbl 0112.09101
How to Cite This Entry:
Borel strong law of large numbers. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Borel_strong_law_of_large_numbers&oldid=40204
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article