Namespaces
Variants
Actions

Bochner-Riesz means

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Bochner–Riesz averages

Bochner–Riesz means can be defined and developed in different settings: multiple Fourier integrals; multiple Fourier series; other orthogonal series expansions. Below these three separate cases will be pursued, with regard to $L ^ { p }$-convergence, almost-everywhere convergence, localization, and convergence or oscillation at a pre-assigned point.

A primary motivation for studying these operations lies in the fact that a general Fourier series or Fourier integral expansion can only be expected to converge in the sense of the mean square (i.e., $L^{2}$) norm; by inserting various smoothing and convergence factors, the convergence can often be improved to $L ^ { p }$, $p \neq 2$, or to the almost-everywhere sense.

If $f$ is an integrable function on a Euclidean space ${\bf R} ^ { n }$, with Fourier transform $\hat { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { - 2 \pi i x . \xi } d x$, the Bochner–Riesz means of order $\delta > 0$ are defined by:

\begin{equation*} M _ { R } ^ { \delta } (\, f ) ( x ) = \int _ { | \xi | \leq R } \left( 1 - \frac { | \xi | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x \cdot \xi } \hat { f } ( \xi ) d \xi . \end{equation*}

This also can be formally written as a convolution with a kernel function. If $\delta > ( n - 1 ) / 2$ (the critical index), then this kernel is integrable; in particular, $M _ { R } ^ { \delta }$ is a bounded operator on $L ^ { p } ( \mathbf{R} ^ { n } )$, $1 \leq p < \infty$, and $\operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x )$ for almost every $x \in \mathbf{R} ^ { n }$ and $\| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0$. Below the critical index, one has the following results:

If $n = 2$ and $0 < \delta \leq 1 / 2$, then $M _ { R } ^ { \delta }$ is a bounded operator on $L ^ { p }$ if and only if $( 1 / p , \delta )$ lies in the trapezoidal region defined by the inequalities $( 1 - 2 \delta ) / 4 < 1 / p < ( 3 + 2 \delta ) / 4$.

If $n \geq 3$ and $( n - 1 ) / 2 ( n + 1 ) < \delta < ( n - 1 ) / 2$, then $M _ { R } ^ { \delta }$ is a bounded operator on $L ^ { p }$ if and only if $( 1 / p , \delta )$ lies in the trapezoidal region defined by the inequalities $( n - 1 - 2 \delta ) / 2 n < 1 / p < ( n + 1 + 2 \delta ) / 2 n$.

If $n \geq 3$ and $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$, then $M _ { R } ^ { \delta }$ is a bounded operator on $L ^ { p }$ if $( 1 / p , \delta )$ lies in the triangular region defined by the inequalities $( n - 1 - 2 \delta ) / 2 n < 1 / p < ( n - 1 + 2 \delta ) / 2 n$ and is an unbounded operator if either $1 / p \leq ( n - 1 - 2 \delta ) / 2 n$ or $1 / p \geq ( n + 1 + 2 \delta ) / 2 n$.

For any $n \geq 2$, in the limiting case $\delta = 0$, $M _ { R } ^ { \delta }$ is a bounded operator on $L ^ { p }$ if and only if $p = 2$. If $f \in L ^ { 1 } \cap L ^ { 2 } ( \mathbf{R} ^ { 2 k + 1 } )$ and $f$ has $j$ continuous derivatives, then $\operatorname { lim } _ { R } M _ { R } ^ { \delta } f ( x ) = f ( x )$ provided that $\delta \geq k - j$. If $f = 0$ in an open ball centred at $0$, then $M _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) \rightarrow 0$ when $R \rightarrow \infty$. There is also a Gibbs phenomenon for $L^1$ functions which have a simple jump across a hypersurface $S$ with respect to $x _ { 0 } \in S$. If $\delta > ( n - 1 ) / 2$, then the set of accumulation points of $M _ { R } f ( x )$ when $R \rightarrow \infty$, $x \rightarrow x_{0}$ equals the segment with centre $[ f _ { S } ^ { + } ( x _ { 0 } ) + f _ { S } ^ { - } ( x _ { 0 } ) ] / 2$ and length $G _ { \delta } [ f _ { S } ^ { + } ( x _ { 0 } ) - f _ { S } ^ { - } ( x _ { 0 } ) ]$, where $G _ { \delta } = ( 2 / \pi ) \operatorname { sup } _ { x > 0 } \int _ { 0 } ^ { 1 } ( 1 - t ^ { 2 } ) ^ { \delta } \operatorname { sin } x t d t / t$.

If $f$ is an integrable function on the torus $\mathcal{T} ^ { n }$, the Bochner–Riesz means of order $\delta > 0$ are defined by

\begin{equation*} S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { | m | \leq R } \left( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m ), \end{equation*}

where the Fourier coefficient is defined by $\widehat { f } ( m ) = \int _ { \mathcal T ^ { n } } f ( x ) e ^ { - 2 \pi i x m } d x$. If $f \in L ^ { p } ( \mathcal{T} ^ { n } )$, then

\begin{equation*} \operatorname { lim } _ { R } S _ { R } ^ { \delta } \,f ( x ) = f ( x ) \end{equation*}

almost everywhere if $\delta > ( n - 1 ) | 1 / 2 - 1 / p |$; convergence in $L ^ { p }$ holds if $| 1 / p - 1 / 2 | \geq 1 / ( n + 1 )$ and $\delta > 0$, $\delta > | ( 1 / n p ) - ( 1 / 2 n ) | - 1 / 2$. If $f \in C ( \mathcal{T} ^ { n } )$, $\delta > ( n - 1 ) / 2$, then $\operatorname{lim}S _ { R } ^ { \delta } ( x ) = f ( x )$ uniformly for $x \in \mathcal{T} ^ { n }$. At the critical index, one has the following behaviour: for any open ball centred at $0$, there exists an $f \in L ^ { 1 } ( \mathcal{T} ^ { n } )$ so that $f = 0$ in the ball and $\operatorname{lim\,sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$. There exists an integrable function $f$ for which $\operatorname{lim sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( x ) = + \infty$ for almost every $x \in \mathcal{T} ^ { n }$. If, in addition, $| f | \operatorname { log } ^ { + } | f |$ is integrable and $f$ satisfies a Dini condition (cf. also Dini criterion) at $x _ { 0 }$, then $\lim _R S _ { R } ^ { ( n - 1 ) / 2 } f ( x _ { 0 } ) = f ( x _ { 0 } )$.

Bochner–Riesz means can be defined with respect to any orthonormal basis $\{ \phi _ { k } \}$ of the Hilbert space corresponding to a self-adjoint differential operator $L$ with eigenvalues $\lambda _ { k } \geq 0$. In this setting, the Bochner–Riesz means of order $\delta > 0$ are defined by

\begin{equation*} S _ { R } ^ { \delta }\, f ( x ) = \sum _ { \lambda _ { k } \leq R } \left( 1 - \frac { \lambda _ { k } } { R } \right) ^ { \delta } ( f , \phi _ { k } ) \phi _ { k } ( x ). \end{equation*}

In the case of multiple Hermite series corresponding to the differential operator $L = ( \Delta / 2 ) - x . \nabla$ on ${\bf R} ^ { n }$, one has $\lambda _ { k } = 2 k + n$ and the convergence in $L ^ { p }$ holds if $\delta > ( n - 1 ) / 2$; almost-everywhere convergence holds if $\delta > ( 3 n - 2 ) / 6$. In the case of an arbitrary elliptic differential operator on a compact manifold, it is known that if $f \in L ^ { 1 }$, then $\| S _ { R } ^ { \delta }\, f - f \| _ { 1 } \rightarrow 0$ whenever $\delta > ( n - 1 ) / 2$. For second-order operators there is an $L ^ { p }$ convergence theorem, provided that $| 1 / p - 1 / 2 | \geq 1 / ( n + 1 )$ and $\delta > 0$ and $\delta > | 1 / n p - 1 / 2 n | - 1 / 2$.

References

[a1] S. Bochner, "Summation of multiple Fourier series by spherical means" Trans. Amer. Math. Soc. , 40 (1936) pp. 175–207 Zbl 62.0293.03
[a2] C. Fefferman, "A note on spherical summation multipliers" Israel J. Math. , 15 (1973) pp. 44–52
[a3] B.I. Golubov, "On Gibb's phenomenon for Riesz spherical means of multiple Fourier integrals and Fourier series" Anal. Math. , 4 (1978) pp. 269–287
[a4] B.M. Levitan, "Ueber die Summierung mehrfacher Fourierreihen und Fourierintegrale" Dokl. Akad. Nauk SSSR , 102 (1955) pp. 1073–1076
[a5] E.M. Stein, "Harmonic analysis" , Princeton Univ. Press (1993)
[a6] S. Thangavelu, "Lectures on Hermite and Laguerre expansions" , Princeton Univ. Press (1993)
[a7] C. Sogge, "On the convergence of Riesz means on compact manifolds" Ann. of Math. , 126 (1987) pp. 439–447
How to Cite This Entry:
Bochner-Riesz means. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bochner-Riesz_means&oldid=55284
This article was adapted from an original article by Mark Pinsky (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article