Namespaces
Variants
Actions

Difference between revisions of "Bethe-Sommerfeld conjecture"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex)
Line 1: Line 1:
Motivated by the study of the electronic spectrum of a crystal in solid state quantum physics, this conjecture becomes in mathematics a problem in [[Spectral theory|spectral theory]] for a Schrödinger operator (cf. also [[Schrödinger equation|Schrödinger equation]]) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201901.png" /> with a real periodic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201902.png" />-potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201903.png" />. More precisely, one considers the unbounded [[Self-adjoint operator|self-adjoint operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201904.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201905.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201906.png" /> is the [[Laplace operator|Laplace operator]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201907.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201908.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b1201909.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019010.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019011.png" /> is a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019012.png" /> which generates a lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019013.png" /> by
+
Motivated by the study of the electronic spectrum of a crystal in solid state quantum physics, this conjecture becomes in mathematics a problem in
 +
[[Spectral theory|spectral theory]] for a Schrödinger operator (cf. also
 +
[[Schrödinger equation|Schrödinger equation]]) on $\R^n$ with a real periodic $C^\infty$-potential $V$. More precisely, one considers the unbounded
 +
[[Self-adjoint operator|self-adjoint operator]] $-\Delta+V(x)$ on $L^2(\R^n)$, where $\Delta$ is the
 +
[[Laplace operator|Laplace operator]], $\Delta=\sum_{j=1}^n \def\pa{\partial}\pa^2/\pa x_j^2$ and $V$ satisfies $V(x+e_j)=V(x)$ for $j=1,\dots,n$. Here, $e_j$ is a basis in $\R^n$ which generates a lattice $\def\G{\Gamma}\G$ by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019014.png" /></td> </tr></table>
+
$$\G=\big\{\sum_{j=1}^n k_je_j : k=(k_1,\dots,k_n)\in\Z^n\big\},$$
 +
and one denotes by $\def\cK{ {\cal K} }\cK$ a fundamental cell
  
and one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019015.png" /> a fundamental cell
+
$$\cK = \big\{\sum_{j=1}^n t_je_j : t_j\in [0,1]\big\}.$$
 +
In this case the spectrum coincides with a union of bands on the real axis. This can be seen using
 +
[[Floquet theory|Floquet theory]], which consists of introducing a family of problems on the torus $T^n=\R^n/\G$, parametrized by $\theta\in\cK^*$, where $\cK^*$ is a fundamental cell of the dual lattice $\Gamma^*$ generated by the dual basis $(e_j^*)$ of the basis $(e_j)$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019016.png" /></td> </tr></table>
+
For each $\theta$, the operator considered on $T^n$ is the operator
  
In this case the spectrum coincides with a union of bands on the real axis. This can be seen using [[Floquet theory|Floquet theory]], which consists of introducing a family of problems on the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019017.png" />, parametrized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019019.png" /> is a fundamental cell of the dual lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019020.png" /> generated by the dual basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019021.png" /> of the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019022.png" />.
+
$$P^\theta=\sum_{j=1}^n\big(\frac{1}{i}\frac{\pa}{\pa x_j}+\theta_j\big)^2+V.$$
 +
Its spectrum consists of a discrete increasing sequence of eigenvalues $\def\l{\lambda}\l(\def\th{\theta}\th)$ ($j\in\N$) tending to $+\infty$ and the $j$th band is then described as
  
For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019023.png" />, the operator considered on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019024.png" /> is the operator
+
$$B_j=\bigcup_{\th\in \cK^*}\l_j(\th).$$
 +
For $n=1$, this spectrum has been analyzed in detail (e.g., see
 +
[[#References|[a2]]]) and it is possible to show that the bands do not overlap and that generically the number of lacunae in the spectrum is infinite. The typical model is the Mathieu operator $u\mapsto -d^2u/dx^2+(\cos x)u$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019025.png" /></td> </tr></table>
+
If the dimension is $>1$, it was conjectured in the 1930s by the physicists A. Sommerfeld and H. Bethe
 +
[[#References|[a11]]], probably on the basis of what is observed for potentials of the form $V(x)=v_1(x_1)+v_2(x_2)+v_3(x_3)$, that the number of lacunae in the spectrum is always finite. This is what is called the Bethe–Sommerfeld conjecture and this has become a challenging problem in spectral theory, with relations to
 +
[[Number theory|number theory]][[#References|[a9]]].
  
Its spectrum consists of a discrete increasing sequence of eigenvalues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019026.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019027.png" />) tending to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019028.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019029.png" />th band is then described as
+
This conjecture has been proved in dimensions $2$ and $3$ by M.M. Skriganov
 +
[[#References|[a8]]],
 +
[[#References|[a10]]] (see also
 +
[[#References|[a1]]]) in 1979, respectively 1984, and in dimension $4$ by B. Helffer and A. Mohamed
 +
[[#References|[a3]]] in 1996.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019030.png" /></td> </tr></table>
+
The general case seems open (1998) although there are results under particular assumptions on the lattice
 +
[[#References|[a9]]].
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019031.png" />, this spectrum has been analyzed in detail (e.g., see [[#References|[a2]]]) and it is possible to show that the bands do not overlap and that generically the number of lacunae in the spectrum is infinite. The typical model is the Mathieu operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019032.png" />.
+
One way to prove this conjecture (see
 +
[[#References|[a1]]],
 +
[[#References|[a3]]]) is to analyze the density of states
 +
[[#References|[a7]]], which is defined via Floquet theory and for a given $\mu\in\R$ by
  
If the dimension is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019033.png" />, it was conjectured in the 1930s by the physicists A. Sommerfeld and H. Bethe [[#References|[a11]]], probably on the basis of what is observed for potentials of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019034.png" />, that the number of lacunae in the spectrum is always finite. This is what is called the Bethe–Sommerfeld conjecture and this has become a challenging problem in spectral theory, with relations to [[Number theory|number theory]] [[#References|[a9]]].
+
$$N(\mu)=\frac{1}{|\cK^*|}\int_{\cK^*}\big(\sum_{\l_j(\th)<\mu}1\big)d\th,$$
 +
with $|\cK^*|=\int_{\cK^*}d\th$, and to give, under the assumptions $\int_\cK Vdx = 0$ and $n\ge 2$, a precise asymptotic formula, as $\mu\to +\infty$, for $N(\mu)$ in the following form:
  
This conjecture has been proved in dimensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019036.png" /> by M.M. Skriganov [[#References|[a8]]], [[#References|[a10]]] (see also [[#References|[a1]]]) in 1979, respectively 1984, and in dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019037.png" /> by B. Helffer and A. Mohamed [[#References|[a3]]] in 1996.
+
$$N(\mu)=a_\mu^{n/2}+\mathfrak{O}_\epsilon(\mu^{(n-3+\epsilon)/2}+\mathfrak{O}_\epsilon(1)$$
 +
for all $\epsilon>0$, with $a_n=(2\pi)^{-n}|S^{n-1}|/n$ (here, $|S^{n-1}|$ denotes the volume of the sphere).
  
The general case seems open (1998) although there are results under particular assumptions on the lattice [[#References|[a9]]].
+
This leads to a proof of this conjecture if $2\le\nu\le4$.
  
One way to prove this conjecture (see [[#References|[a1]]], [[#References|[a3]]]) is to analyze the density of states [[#References|[a7]]], which is defined via Floquet theory and for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019038.png" /> by
+
Another approach consists of using a (singular) perturbation theory as presented in
 
+
[[#References|[a4]]] (which is mainly devoted to the case $n\le 3$ in the case of second-order operators). Similar questions occur for other operators with periodic coefficients, like the Schrödinger operator with magnetic field
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019039.png" /></td> </tr></table>
+
[[#References|[a6]]], the Dirac operator and more general elliptic operators ([[#References|[a4]]],
 
+
[[#References|[a5]]]).
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019040.png" />, and to give, under the assumptions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019042.png" />, a precise asymptotic formula, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019043.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019044.png" /> in the following form:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019045.png" /></td> </tr></table>
 
 
 
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019046.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019047.png" /> (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019048.png" /> denotes the volume of the sphere).
 
 
 
This leads to a proof of this conjecture if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019049.png" />.
 
 
 
Another approach consists of using a (singular) perturbation theory as presented in [[#References|[a4]]] (which is mainly devoted to the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120190/b12019050.png" /> in the case of second-order operators). Similar questions occur for other operators with periodic coefficients, like the Schrödinger operator with magnetic field [[#References|[a6]]], the Dirac operator and more general elliptic operators ([[#References|[a4]]], [[#References|[a5]]]).
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Dahlberg,  E. Trubowitz,  "A remark on two dimensional periodic potentials"  ''Comment. Math. Helvetici'' , '''57'''  (1982)  pp. 130–134</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M.S.P. Eastham,  "The spectral theory of periodic differential equations" , Scottish Acad. Press  (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B. Helffer,  A. Mohamed,  "Asymptotic of the density of states for the Schrödinger operator with periodic electric potential"  ''Duke Math. J.'' , '''92''' :  1  (1998)  pp. 1–60</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y.E. Karpeshina,  "Perturbation theory for the Schrödinger operator with a periodic potential" , ''Lecture Notes Math.'' , '''1663''' , Springer  (1977)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  P. Kuchment,  "Floquet theory for partial differential equations" , ''Oper. Th. Adv. Appl.'' , '''60''' , Birkhäuser  (1993)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Mohamed,  "Asymptotic of the density of states for Schrödinger operator with periodic electro-magnetic potential"  ''J. Math. Phys.'' , '''38''' :  8  (1997)  pp. 4023–4051</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  M. Shubin,  "The spectral theory and the index of almost periodic coefficients"  ''Russian Math. Surveys'' , '''34''' :  2  (1979)  pp. 109–157</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  M.M. Skriganov,  "Proof of the Bethe–Sommerfeld conjecture in dimension two"  ''Soviet Math. Dokl.'' , '''20''' :  5  (1979)  pp. 956–959</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M.M. Skriganov,  "Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators"  ''Proc. Steklov Inst. Math.'' :  2  (1987)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  M.M. Skriganov,  "The spectrum band structure of the three dimensional Schrödinger operator with periodic potential"  ''Invent. Math.'' , '''80'''  (1985)  pp. 107–121</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  A. Sommerfeld,  H. Bethe,  "Electronentheorie der Metalle" , ''Handbuch Physik'' , Springer  (1933)  (Edition: Second)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD>
 +
<TD valign="top">  J. Dahlberg,  E. Trubowitz,  "A remark on two dimensional periodic potentials"  ''Comment. Math. Helvetici'' , '''57'''  (1982)  pp. 130–134</TD>
 +
</TR><TR><TD valign="top">[a2]</TD>
 +
<TD valign="top">  M.S.P. Eastham,  "The spectral theory of periodic differential equations" , Scottish Acad. Press  (1973)</TD>
 +
</TR><TR><TD valign="top">[a3]</TD>
 +
<TD valign="top">  B. Helffer,  A. Mohamed,  "Asymptotic of the density of states for the Schrödinger operator with periodic electric potential"  ''Duke Math. J.'' , '''92''' :  1  (1998)  pp. 1–60</TD>
 +
</TR><TR><TD valign="top">[a4]</TD>
 +
<TD valign="top">  Y.E. Karpeshina,  "Perturbation theory for the Schrödinger operator with a periodic potential" , ''Lecture Notes Math.'' , '''1663''' , Springer  (1977)</TD>
 +
</TR><TR><TD valign="top">[a5]</TD>
 +
<TD valign="top">  P. Kuchment,  "Floquet theory for partial differential equations" , ''Oper. Th. Adv. Appl.'' , '''60''' , Birkhäuser  (1993)</TD>
 +
</TR><TR><TD valign="top">[a6]</TD>
 +
<TD valign="top">  A. Mohamed,  "Asymptotic of the density of states for Schrödinger operator with periodic electro-magnetic potential"  ''J. Math. Phys.'' , '''38''' :  8  (1997)  pp. 4023–4051</TD>
 +
</TR><TR><TD valign="top">[a7]</TD>
 +
<TD valign="top">  M. Shubin,  "The spectral theory and the index of almost periodic coefficients"  ''Russian Math. Surveys'' , '''34''' :  2  (1979)  pp. 109–157</TD>
 +
</TR><TR><TD valign="top">[a8]</TD>
 +
<TD valign="top">  M.M. Skriganov,  "Proof of the Bethe–Sommerfeld conjecture in dimension two"  ''Soviet Math. Dokl.'' , '''20''' :  5  (1979)  pp. 956–959</TD>
 +
</TR><TR><TD valign="top">[a9]</TD>
 +
<TD valign="top">  M.M. Skriganov,  "Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators"  ''Proc. Steklov Inst. Math.'' :  2  (1987)</TD>
 +
</TR><TR><TD valign="top">[a10]</TD>
 +
<TD valign="top">  M.M. Skriganov,  "The spectrum band structure of the three dimensional Schrödinger operator with periodic potential"  ''Invent. Math.'' , '''80'''  (1985)  pp. 107–121</TD>
 +
</TR><TR><TD valign="top">[a11]</TD>
 +
<TD valign="top">  A. Sommerfeld,  H. Bethe,  "Electronentheorie der Metalle" , ''Handbuch Physik'' , Springer  (1933)  (Edition: Second)</TD>
 +
</TR></table>

Revision as of 11:36, 2 December 2017

Motivated by the study of the electronic spectrum of a crystal in solid state quantum physics, this conjecture becomes in mathematics a problem in spectral theory for a Schrödinger operator (cf. also Schrödinger equation) on $\R^n$ with a real periodic $C^\infty$-potential $V$. More precisely, one considers the unbounded self-adjoint operator $-\Delta+V(x)$ on $L^2(\R^n)$, where $\Delta$ is the Laplace operator, $\Delta=\sum_{j=1}^n \def\pa{\partial}\pa^2/\pa x_j^2$ and $V$ satisfies $V(x+e_j)=V(x)$ for $j=1,\dots,n$. Here, $e_j$ is a basis in $\R^n$ which generates a lattice $\def\G{\Gamma}\G$ by

$$\G=\big\{\sum_{j=1}^n k_je_j : k=(k_1,\dots,k_n)\in\Z^n\big\},$$ and one denotes by $\def\cK{ {\cal K} }\cK$ a fundamental cell

$$\cK = \big\{\sum_{j=1}^n t_je_j : t_j\in [0,1]\big\}.$$ In this case the spectrum coincides with a union of bands on the real axis. This can be seen using Floquet theory, which consists of introducing a family of problems on the torus $T^n=\R^n/\G$, parametrized by $\theta\in\cK^*$, where $\cK^*$ is a fundamental cell of the dual lattice $\Gamma^*$ generated by the dual basis $(e_j^*)$ of the basis $(e_j)$.

For each $\theta$, the operator considered on $T^n$ is the operator

$$P^\theta=\sum_{j=1}^n\big(\frac{1}{i}\frac{\pa}{\pa x_j}+\theta_j\big)^2+V.$$ Its spectrum consists of a discrete increasing sequence of eigenvalues $\def\l{\lambda}\l(\def\th{\theta}\th)$ ($j\in\N$) tending to $+\infty$ and the $j$th band is then described as

$$B_j=\bigcup_{\th\in \cK^*}\l_j(\th).$$ For $n=1$, this spectrum has been analyzed in detail (e.g., see [a2]) and it is possible to show that the bands do not overlap and that generically the number of lacunae in the spectrum is infinite. The typical model is the Mathieu operator $u\mapsto -d^2u/dx^2+(\cos x)u$.

If the dimension is $>1$, it was conjectured in the 1930s by the physicists A. Sommerfeld and H. Bethe [a11], probably on the basis of what is observed for potentials of the form $V(x)=v_1(x_1)+v_2(x_2)+v_3(x_3)$, that the number of lacunae in the spectrum is always finite. This is what is called the Bethe–Sommerfeld conjecture and this has become a challenging problem in spectral theory, with relations to number theory[a9].

This conjecture has been proved in dimensions $2$ and $3$ by M.M. Skriganov [a8], [a10] (see also [a1]) in 1979, respectively 1984, and in dimension $4$ by B. Helffer and A. Mohamed [a3] in 1996.

The general case seems open (1998) although there are results under particular assumptions on the lattice [a9].

One way to prove this conjecture (see [a1], [a3]) is to analyze the density of states [a7], which is defined via Floquet theory and for a given $\mu\in\R$ by

$$N(\mu)=\frac{1}{|\cK^*|}\int_{\cK^*}\big(\sum_{\l_j(\th)<\mu}1\big)d\th,$$ with $|\cK^*|=\int_{\cK^*}d\th$, and to give, under the assumptions $\int_\cK Vdx = 0$ and $n\ge 2$, a precise asymptotic formula, as $\mu\to +\infty$, for $N(\mu)$ in the following form:

$$N(\mu)=a_\mu^{n/2}+\mathfrak{O}_\epsilon(\mu^{(n-3+\epsilon)/2}+\mathfrak{O}_\epsilon(1)$$ for all $\epsilon>0$, with $a_n=(2\pi)^{-n}|S^{n-1}|/n$ (here, $|S^{n-1}|$ denotes the volume of the sphere).

This leads to a proof of this conjecture if $2\le\nu\le4$.

Another approach consists of using a (singular) perturbation theory as presented in [a4] (which is mainly devoted to the case $n\le 3$ in the case of second-order operators). Similar questions occur for other operators with periodic coefficients, like the Schrödinger operator with magnetic field [a6], the Dirac operator and more general elliptic operators ([a4], [a5]).

References

[a1] J. Dahlberg, E. Trubowitz, "A remark on two dimensional periodic potentials" Comment. Math. Helvetici , 57 (1982) pp. 130–134
[a2] M.S.P. Eastham, "The spectral theory of periodic differential equations" , Scottish Acad. Press (1973)
[a3] B. Helffer, A. Mohamed, "Asymptotic of the density of states for the Schrödinger operator with periodic electric potential" Duke Math. J. , 92 : 1 (1998) pp. 1–60
[a4] Y.E. Karpeshina, "Perturbation theory for the Schrödinger operator with a periodic potential" , Lecture Notes Math. , 1663 , Springer (1977)
[a5] P. Kuchment, "Floquet theory for partial differential equations" , Oper. Th. Adv. Appl. , 60 , Birkhäuser (1993)
[a6] A. Mohamed, "Asymptotic of the density of states for Schrödinger operator with periodic electro-magnetic potential" J. Math. Phys. , 38 : 8 (1997) pp. 4023–4051
[a7] M. Shubin, "The spectral theory and the index of almost periodic coefficients" Russian Math. Surveys , 34 : 2 (1979) pp. 109–157
[a8] M.M. Skriganov, "Proof of the Bethe–Sommerfeld conjecture in dimension two" Soviet Math. Dokl. , 20 : 5 (1979) pp. 956–959
[a9] M.M. Skriganov, "Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators" Proc. Steklov Inst. Math. : 2 (1987)
[a10] M.M. Skriganov, "The spectrum band structure of the three dimensional Schrödinger operator with periodic potential" Invent. Math. , 80 (1985) pp. 107–121
[a11] A. Sommerfeld, H. Bethe, "Electronentheorie der Metalle" , Handbuch Physik , Springer (1933) (Edition: Second)
How to Cite This Entry:
Bethe-Sommerfeld conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bethe-Sommerfeld_conjecture&oldid=42388
This article was adapted from an original article by Bernard Helffer (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article