Namespaces
Variants
Actions

Barrier

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Lebesgue barrier, in potential theory

A function the existence of which is a necessary and sufficient condition for the regularity of a boundary point with respect to the behaviour of a generalized solution of the Dirichlet problem at that point (cf. Perron method; Regular boundary point).

Let be a domain in a Euclidean space , , and let be a point on its boundary . A barrier for the point is any function , continuous in the intersection of the closed domain with some ball with centre at , which is superharmonic in and positive in , except at , at which it vanishes. For instance, if and is any boundary point for which there exists a closed ball in which meets only in , one can take as a barrier the harmonic function

where is the radius of and is its centre.

A barrier in the theory of functions of (several) complex variables is a function the existence of which for all boundary points of the domain implies that is a domain of holomorphy. Let be a domain in the complex space , , and let be a point of the boundary . Any analytic function in with a singular point at will then be a barrier at . Thus, the function is a barrier for the boundary point of any plane domain . There also exists a barrier at any point of the boundary of the ball

e.g. the function .

A barrier exists at a boundary point of a domain if there is an analytic function defined in that is unbounded at , i.e. is such that for some sequence of points which converges to one has:

The converse is true for domains in the following strong form: For any set of boundary points of a domain at which a barrier exists, one can find a function holomorphic in which is unbounded at all points of . If is everywhere dense in the boundary of , then is a domain of holomorphy.

References

[1] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) MR0195654
[2] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) pp. Chapt. 3 (Translated from Russian)
[3] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1985) pp. Chapt. 3 (In Russian) Zbl 0578.32001 Zbl 0574.30001


Comments

Good English references for the Lebesgue barrier are [a1] and [a2].

References

[a1] W.K. Hayman, P.B. Kennedy, "Subharmonic functions" , 1 , Cambridge Univ. Press (1976) MR0460672 MR0419791 MR0412442 MR0442324 Zbl 0419.31001 Zbl 0339.31003 Zbl 0328.33011
[a2] L.L. Helms, "Introduction to potential theory" , Acad. Press (1975) (Translated from German) MR0460666 Zbl 0188.17203
How to Cite This Entry:
Barrier. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Barrier&oldid=28154
This article was adapted from an original article by E.D. SolomentsevM. Shirinbekov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article