Namespaces
Variants
Actions

Difference between revisions of "Banaschewski compactification"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
(latex details)
Line 1: Line 1:
A [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101201.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101203.png" />-dimensional if it is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101204.png" />-space (cf. also [[Separation axiom|Separation axiom]]) with a base of [[clopen]] sets (a set is called clopen if it is both open and closed). The Banaschewski compactification [[#References|[a1]]], [[#References|[a2]]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101205.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101206.png" />, is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101207.png" />-dimensional analogue of the [[Stone–Čech compactification|Stone–Čech compactification]] of a [[Tikhonov space|Tikhonov space]]. It can be obtained as the [[Stone space|Stone space]] of the [[Boolean algebra|Boolean algebra]] of clopen subsets.
+
A [[topological space]] $X$ is $0$-dimensional if it is a $T_1$-space (cf. also [[Separation axiom|Separation axiom]]) with a base of [[clopen]] sets (a set is called clopen if it is both open and closed). The Banaschewski compactification [[#References|[a1]]], [[#References|[a2]]] of $X$, denoted by $\beta_0 X$, is the $0$-dimensional analogue of the [[Stone–Čech compactification]] of a [[Tikhonov space]]. It can be obtained as the [[Stone space]] of the [[Boolean algebra]] of clopen subsets.
  
The Banaschewski compactification is also a special case of the [[Wallman compactification|Wallman compactification]] [[#References|[a4]]] (as generalized by N.A. Shanin, [[#References|[a3]]]). A fairly general approach subsuming the above-mentioned compactifications is as follows.
+
The Banaschewski compactification is also a special case of the [[Wallman compactification]] [[#References|[a4]]] (as generalized by N.A. Shanin, [[#References|[a3]]]). A fairly general approach subsuming the above-mentioned compactifications is as follows.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101208.png" /> be an arbitrary non-empty set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101209.png" /> a [[Lattice|lattice]] of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012010.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012011.png" />. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012012.png" /> is disjunctive and separating, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012013.png" /> be the [[Algebra|algebra]] generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012014.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012015.png" /> be the set of non-trivial zero-one valued finitely additive measures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012016.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012017.png" /> be the set of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012018.png" /> that are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012019.png" />-regular, i.e.,
+
Let $X$ be an arbitrary non-empty set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101209.png" /> a [[Lattice|lattice]] of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012010.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012011.png" />. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012012.png" /> is disjunctive and separating, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012013.png" /> be the [[Algebra|algebra]] generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012014.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012015.png" /> be the set of non-trivial zero-one valued finitely additive measures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012016.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012017.png" /> be the set of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012018.png" /> that are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012019.png" />-regular, i.e.,
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012020.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012020.png" /></td> </tr></table>
Line 21: Line 21:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Banaschewski,  "Über nulldimensional Räume"  ''Math. Nachr.'' , '''13'''  (1955)  pp. 129–140</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. Banaschewski,  "On Wallman's method of compactification"  ''Math. Nachr.'' , '''27'''  (1963)  pp. 105–114</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N.A. Shanin,  "On the theory of bicompact extensions of topological spaces"  ''Dokl. Aka. Nauk SSSR'' , '''38'''  (1943)  pp. 154–156  (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Wallman,  "Lattices and topological spaces"  ''Ann. Math.'' , '''39'''  (1938)  pp. 112–126</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Banaschewski,  "Über nulldimensional Räume"  ''Math. Nachr.'' , '''13'''  (1955)  pp. 129–140</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. Banaschewski,  "On Wallman's method of compactification"  ''Math. Nachr.'' , '''27'''  (1963)  pp. 105–114</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N.A. Shanin,  "On the theory of bicompact extensions of topological spaces"  ''Dokl. Aka. Nauk SSSR'' , '''38'''  (1943)  pp. 154–156  (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Wallman,  "Lattices and topological spaces"  ''Ann. Math.'' , '''39'''  (1938)  pp. 112–126</TD></TR></table>
 +
 +
{{TEX|want}}

Revision as of 20:23, 14 December 2023

A topological space $X$ is $0$-dimensional if it is a $T_1$-space (cf. also Separation axiom) with a base of clopen sets (a set is called clopen if it is both open and closed). The Banaschewski compactification [a1], [a2] of $X$, denoted by $\beta_0 X$, is the $0$-dimensional analogue of the Stone–Čech compactification of a Tikhonov space. It can be obtained as the Stone space of the Boolean algebra of clopen subsets.

The Banaschewski compactification is also a special case of the Wallman compactification [a4] (as generalized by N.A. Shanin, [a3]). A fairly general approach subsuming the above-mentioned compactifications is as follows.

Let $X$ be an arbitrary non-empty set and a lattice of subsets of such that . Assume that is disjunctive and separating, let be the algebra generated by , let be the set of non-trivial zero-one valued finitely additive measures on , and let be the set of elements that are -regular, i.e.,

One can identify with the -prime filters and with the -ultrafilters (cf. also Filter; Ultrafilter).

Next, let , where ; is a lattice isomorphism from to . Take as a base for the closed sets of a topology on . Then is a compact -space and it is (cf. Hausdorff space) if and only if is a normal lattice. can be densely imbedded in by the mapping , where is the Dirac measure concentrated at (cf. also Dirac delta-function). The mapping is a homeomorphism if is given the topology of closed sets with as base for the closed sets.

If is a -space and is the lattice of closed sets, then becomes the usual Wallman compactification .

If is a Tikhonov space and is the lattice of zero sets, then becomes the Stone–Čech compactification .

If is a -dimensional -space and is the lattice of clopen sets, then becomes the Banaschewski compactification .

if and only if is a normal space; if and only if is strongly -dimensional (i.e., the clopen sets separate the zero sets).

References

[a1] B. Banaschewski, "Über nulldimensional Räume" Math. Nachr. , 13 (1955) pp. 129–140
[a2] B. Banaschewski, "On Wallman's method of compactification" Math. Nachr. , 27 (1963) pp. 105–114
[a3] N.A. Shanin, "On the theory of bicompact extensions of topological spaces" Dokl. Aka. Nauk SSSR , 38 (1943) pp. 154–156 (In Russian)
[a4] H. Wallman, "Lattices and topological spaces" Ann. Math. , 39 (1938) pp. 112–126
How to Cite This Entry:
Banaschewski compactification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Banaschewski_compactification&oldid=30590
This article was adapted from an original article by G. Bachman (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article