Namespaces
Variants
Actions

Difference between revisions of "Banach space of analytic functions with infinite-dimensional domains"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 75 formulas out of 75 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
The primary interest here is in the interplay between function theory on infinite-dimensional domains, geometric properties of Banach spaces, and Banach and Fréchet algebras. Throughout, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200501.png" /> will denote a complex [[Banach space|Banach space]] with open unit ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200502.png" />.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 
 +
Out of 75 formulas, 75 were replaced by TEX code.-->
 +
 
 +
{{TEX|semi-auto}}{{TEX|done}}
 +
The primary interest here is in the interplay between function theory on infinite-dimensional domains, geometric properties of Banach spaces, and Banach and Fréchet algebras. Throughout, $E$ will denote a complex [[Banach space|Banach space]] with open unit ball $B_E$.
  
 
==Definition and basic properties.==
 
==Definition and basic properties.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200503.png" /> denote the space of complex-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200505.png" />-homogeneous polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200506.png" />, i.e. functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200507.png" /> to which is associated a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200508.png" />-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200509.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005010.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005011.png" />. Each such polynomial is associated with a unique symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005012.png" />-linear form via the polarization formula. For an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005013.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005014.png" /> is holomorphic, or analytic, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005015.png" /> has a complex [[Fréchet derivative|Fréchet derivative]] at each point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005016.png" /> (cf. also [[Algebra of functions|Algebra of functions]]). Equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005017.png" /> is holomorphic if at each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005018.png" /> there is a sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005019.png" />-homogeneous polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005020.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005021.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005022.png" /> in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005024.png" />, then the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005025.png" /> of holomorphic functions from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005026.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005027.png" /> always contains as a proper subset the subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005028.png" /> of holomorphic functions which are bounded on bounded subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005029.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005030.png" />. The latter space is a [[Fréchet algebra|Fréchet algebra]] with metric determined by countably many such subsets, whereas there are a number of natural topologies on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005031.png" />.
+
Let $\mathcal{P} ( \square ^ { n } E )$ denote the space of complex-valued $n$-homogeneous polynomials $P : E \rightarrow \bf C$, i.e. functions $P$ to which is associated a continuous $n$-linear function $A : E \times \ldots \times E \rightarrow \mathbf{C}$ such that $P ( z ) = A ( z , \dots , z )$ for all $z \in E$. Each such polynomial is associated with a unique symmetric $n$-linear form via the polarization formula. For an open subset $U \subset E$, one says that $f : U \rightarrow \bf C$ is holomorphic, or analytic, if $f$ has a complex [[Fréchet derivative|Fréchet derivative]] at each point of $U$ (cf. also [[Algebra of functions|Algebra of functions]]). Equivalently, $f$ is holomorphic if at each point $z _ { 0 } \in U$ there is a sequence of $n$-homogeneous polynomials $( P _ { n } ) = ( P _ { n } ( z _ { 0 } ) )$ such that $f ( z ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( z - z _ { 0 } )$ for all $z$ in a neighbourhood of $z_0$. If $ \operatorname {dim} E = \infty$, then the algebra $\mathcal{H} ( U )$ of holomorphic functions from $U$ to $\mathbf{C}$ always contains as a proper subset the subalgebra $\mathcal{H} _ { b } ( U )$ of holomorphic functions which are bounded on bounded subsets $B \subset U$ such that $\operatorname { dist } ( B , U ^ { c } ) &gt; 0$. The latter space is a [[Fréchet algebra|Fréchet algebra]] with metric determined by countably many such subsets, whereas there are a number of natural topologies on $\mathcal{H} ( U )$.
  
 
The natural analogues of the classical Banach algebras of analytic functions are the following:
 
The natural analogues of the classical Banach algebras of analytic functions are the following:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005032.png" />;
+
$\mathcal{H} ^ { \infty } ( B _ { E } ) \equiv \{ f \in \mathcal{H} ( B _ { E } ) : f \, \text { bounded on } \, B _ { E } \}$;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005033.png" />
+
$\mathcal{A} _ { b } ( B _ { E } ) \equiv$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005034.png" /></td> </tr></table>
+
\begin{equation*} \{ f \in \mathcal{H} ^ { \infty } ( B _ { E } ) : f \, \text{continuous and bounded on}\,\overline{B_E}\}; \end{equation*}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005035.png" />
+
$\mathcal{H} _ { uc } ^ { \infty } ( B _ { E } ) \equiv$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005036.png" /></td> </tr></table>
+
\begin{equation*} \{ f \in \mathcal{H} ^ { \infty } ( B _ { E } ) : f \ \text { uniformly continuous on } B _ { E } \}. \end{equation*}
  
 
All are Banach algebras with identity when endowed with the supremum norm (cf. also [[Banach algebra|Banach algebra]]).
 
All are Banach algebras with identity when endowed with the supremum norm (cf. also [[Banach algebra|Banach algebra]]).
  
 
==Results and problems.==
 
==Results and problems.==
For any of the above algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005037.png" /> of analytic functions, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005038.png" /> denote the set of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005039.png" />. Since the Michael problem has an affirmative solution [[#References|[a5]]], every homomorphism is automatically continuous. For each such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005040.png" />, define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005041.png" /> (noting that, always, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005042.png" />). Basic topics of interest here are the relation between the  "fibres"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005044.png" />, and the relation between the geometry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005045.png" /> and of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005046.png" />.
+
For any of the above algebras $\mathcal{A}$ of analytic functions, let $\mathcal{M} ( \mathcal{A} )$ denote the set of homomorphisms $\phi : \mathcal{A} \rightarrow \mathbf{C}$. Since the Michael problem has an affirmative solution [[#References|[a5]]], every homomorphism is automatically continuous. For each such $\phi$, define $\Pi ( \phi ) \equiv \phi | _ { E ^{ *}} \subset E ^ { * * }$ (noting that, always, $E ^ { * } \subset \mathcal{A}$). Basic topics of interest here are the relation between the  "fibres"  $\Pi ^ { - 1 } ( w )$, $w \in E ^ { * * }$, and the relation between the geometry of $E$ and of $\mathcal{M} ( \mathcal{A} )$.
  
The spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005047.png" /> displays very different behaviour in the infinite-dimensional setting, in comparison with the finite-dimensional situation. As an illustration, every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005048.png" /> corresponds to a homomorphism on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005049.png" />. Indeed, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005050.png" /> there is a linear extension mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005051.png" />. Applying this mapping to the [[Taylor series|Taylor series]] of a holomorphic function yields a multiplicative linear extension operator, mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005052.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005053.png" />; similar results hold for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005055.png" />. For example, each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005056.png" /> yields an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005057.png" /> via <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005058.png" />. A complete description of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005059.png" /> is unknown (1998) for general <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005060.png" />, although it is not difficult to see that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005061.png" />. The question of whether the fourth dual of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005062.png" /> also provides points of the spectrum is connected with [[Arens regularity|Arens regularity]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005063.png" /> [[#References|[a7]]]. In any case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005064.png" /> can be made into a [[Semi-group|semi-group]] with identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005065.png" />; the commutativity of this semi-group is related, once again, to Arens regularity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005066.png" /> [[#References|[a6]]].
+
The spectrum $\mathcal{M}$ displays very different behaviour in the infinite-dimensional setting, in comparison with the finite-dimensional situation. As an illustration, every element $z \in E ^ { * * }$ corresponds to a homomorphism on $\mathcal{H} _ { b } ( E )$. Indeed, for each $n$ there is a linear extension mapping from $\mathcal{P} ( \square ^ { n } E ) \rightarrow \mathcal{P} ( \square ^ { n } E ^ { * * } )$. Applying this mapping to the [[Taylor series|Taylor series]] of a holomorphic function yields a multiplicative linear extension operator, mapping $f \in \mathcal{H} _ { b } ( E )$ to $\tilde { f } \in {\cal H} _ { b } ( E ^ { * * } )$; similar results hold for $\mathcal{A} = H ^ { \infty } ( B _ { E } )$ and $\mathcal{A} = \mathcal{H} _ { uc } ^ { \infty } ( B _ { E } )$. For example, each $z \in E ^ { * * }$ yields an element of $\mathcal{M} ( \mathcal{H} _ { b } ( E ) )$ via $\tilde { \delta _ { z } } : f \in \mathcal{H} _ { b } ( E ) \rightarrow \tilde { f } ( z ) \in \mathbf{C}$. A complete description of $\mathcal{M} ( \mathcal{H} _ { b } ( E ) )$ is unknown (1998) for general $E$, although it is not difficult to see that $\mathcal{M} ( \mathcal{H} _ { b } (  c  _ { 0 } ) ) = \{ \widetilde { \delta _ { z } } : z \in \operatorname{l} _ { \infty } \}$. The question of whether the fourth dual of $E$ also provides points of the spectrum is connected with [[Arens regularity|Arens regularity]] of $E$ [[#References|[a7]]]. In any case, $\mathcal{M} ( \mathcal{H} _ { b } ( E ) )$ can be made into a [[Semi-group|semi-group]] with identity $\delta _ { 0 }$; the commutativity of this semi-group is related, once again, to Arens regularity of $E$ [[#References|[a6]]].
  
It is natural to look for analytic structure in the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005067.png" />. In fact, every fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005068.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005069.png" /> contains a copy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005070.png" />. In many situations, e.g. when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005071.png" /> is super-reflexive (cf., also [[Reflexive space|Reflexive space]]), there is an analytic embedding of the unit ball of a non-separable [[Hilbert space|Hilbert space]] into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005072.png" />. Further information has been obtained by J. Farmer [[#References|[a8]]], who has studied analytic structure in fibres in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005073.png" />-spaces. However, note that there is a peak set (cf. also [[Algebra of functions|Algebra of functions]]) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005074.png" /> which is contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005075.png" />.
+
It is natural to look for analytic structure in the spectrum $\mathcal{M} ( \mathcal{H} ^ { \infty } ( B _ { E } ) )$. In fact, every fibre $\mathcal{M} _ { z } \equiv \Pi ^ { - 1 } ( z )$ over $z \in \overline { B } _ { E ^{* *}}$ contains a copy of $( \beta \mathbf{N} \backslash \mathbf{N} ) \times \Delta$. In many situations, e.g. when $E$ is super-reflexive (cf., also [[Reflexive space|Reflexive space]]), there is an analytic embedding of the unit ball of a non-separable [[Hilbert space|Hilbert space]] into $\mathcal{M} _ { 0 }$. Further information has been obtained by J. Farmer [[#References|[a8]]], who has studied analytic structure in fibres in $\text{I} _ { p }$-spaces. However, note that there is a peak set (cf. also [[Algebra of functions|Algebra of functions]]) for $\mathcal{H} ^ { \infty } ( B _ { \text{l}_p } )$ which is contained in $\mathcal{M} _ { 0 }$.
  
 
There has also been recent (1998) interest in the following areas:
 
There has also been recent (1998) interest in the following areas:
  
reflexivity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005076.png" />;
+
reflexivity of $\mathcal{P} ( \square ^ { n } E )$;
  
 
algebras of weakly continuous holomorphic functions; and
 
algebras of weakly continuous holomorphic functions; and
Line 36: Line 44:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Dineen,  "Complex analysis in localy convex spaces" , North-Holland  (1981)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Dineen,  "Complex analysis on infinite dimensional spaces" , Springer  (1999)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Mujica,  "Complex analysis in Banach spaces" , North-Holland  (1986)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  T. Gamelin,  "Analytic functions on Banach spaces" , ''Complex Potential Theory (Montreal 1993)'' , ''NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.'' , '''439''' , Kluwer Acad. Publ.  (1994)  pp. 187–233</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Stensones,  "A proof of the Michael conjecture"  ''preprint''  (1999)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  R. Aron,  B. Cole,  T. Gamelin,  "Spectra of algebras of analytic functions on a Banach space"  ''J. Reine Angew. Math.'' , '''415'''  (1991)  pp. 51–93</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  R. Aron,  P. Galindo,  D. Garcia,  M. Maestre,  "Regularity and algebras of analytic functions in infinite dimensions"  ''Trans. Amer. Math. Soc.'' , '''384''' :  2  (1996)  pp. 543–559</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  J. Farmer,  "Fibers over the sphere of a uniformly convex Banach space"  ''Michigan Math. J.'' , '''45''' :  2  (1998)  pp. 211–226</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  S. Dineen,  "Complex analysis in localy convex spaces" , North-Holland  (1981)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  S. Dineen,  "Complex analysis on infinite dimensional spaces" , Springer  (1999)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  J. Mujica,  "Complex analysis in Banach spaces" , North-Holland  (1986)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  T. Gamelin,  "Analytic functions on Banach spaces" , ''Complex Potential Theory (Montreal 1993)'' , ''NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.'' , '''439''' , Kluwer Acad. Publ.  (1994)  pp. 187–233</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  B. Stensones,  "A proof of the Michael conjecture"  ''preprint''  (1999)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  R. Aron,  B. Cole,  T. Gamelin,  "Spectra of algebras of analytic functions on a Banach space"  ''J. Reine Angew. Math.'' , '''415'''  (1991)  pp. 51–93</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  R. Aron,  P. Galindo,  D. Garcia,  M. Maestre,  "Regularity and algebras of analytic functions in infinite dimensions"  ''Trans. Amer. Math. Soc.'' , '''384''' :  2  (1996)  pp. 543–559</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  J. Farmer,  "Fibers over the sphere of a uniformly convex Banach space"  ''Michigan Math. J.'' , '''45''' :  2  (1998)  pp. 211–226</td></tr></table>

Latest revision as of 15:19, 1 July 2020

The primary interest here is in the interplay between function theory on infinite-dimensional domains, geometric properties of Banach spaces, and Banach and Fréchet algebras. Throughout, $E$ will denote a complex Banach space with open unit ball $B_E$.

Definition and basic properties.

Let $\mathcal{P} ( \square ^ { n } E )$ denote the space of complex-valued $n$-homogeneous polynomials $P : E \rightarrow \bf C$, i.e. functions $P$ to which is associated a continuous $n$-linear function $A : E \times \ldots \times E \rightarrow \mathbf{C}$ such that $P ( z ) = A ( z , \dots , z )$ for all $z \in E$. Each such polynomial is associated with a unique symmetric $n$-linear form via the polarization formula. For an open subset $U \subset E$, one says that $f : U \rightarrow \bf C$ is holomorphic, or analytic, if $f$ has a complex Fréchet derivative at each point of $U$ (cf. also Algebra of functions). Equivalently, $f$ is holomorphic if at each point $z _ { 0 } \in U$ there is a sequence of $n$-homogeneous polynomials $( P _ { n } ) = ( P _ { n } ( z _ { 0 } ) )$ such that $f ( z ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( z - z _ { 0 } )$ for all $z$ in a neighbourhood of $z_0$. If $ \operatorname {dim} E = \infty$, then the algebra $\mathcal{H} ( U )$ of holomorphic functions from $U$ to $\mathbf{C}$ always contains as a proper subset the subalgebra $\mathcal{H} _ { b } ( U )$ of holomorphic functions which are bounded on bounded subsets $B \subset U$ such that $\operatorname { dist } ( B , U ^ { c } ) > 0$. The latter space is a Fréchet algebra with metric determined by countably many such subsets, whereas there are a number of natural topologies on $\mathcal{H} ( U )$.

The natural analogues of the classical Banach algebras of analytic functions are the following:

$\mathcal{H} ^ { \infty } ( B _ { E } ) \equiv \{ f \in \mathcal{H} ( B _ { E } ) : f \, \text { bounded on } \, B _ { E } \}$;

$\mathcal{A} _ { b } ( B _ { E } ) \equiv$

\begin{equation*} \{ f \in \mathcal{H} ^ { \infty } ( B _ { E } ) : f \, \text{continuous and bounded on}\,\overline{B_E}\}; \end{equation*}

$\mathcal{H} _ { uc } ^ { \infty } ( B _ { E } ) \equiv$

\begin{equation*} \{ f \in \mathcal{H} ^ { \infty } ( B _ { E } ) : f \ \text { uniformly continuous on } B _ { E } \}. \end{equation*}

All are Banach algebras with identity when endowed with the supremum norm (cf. also Banach algebra).

Results and problems.

For any of the above algebras $\mathcal{A}$ of analytic functions, let $\mathcal{M} ( \mathcal{A} )$ denote the set of homomorphisms $\phi : \mathcal{A} \rightarrow \mathbf{C}$. Since the Michael problem has an affirmative solution [a5], every homomorphism is automatically continuous. For each such $\phi$, define $\Pi ( \phi ) \equiv \phi | _ { E ^{ *}} \subset E ^ { * * }$ (noting that, always, $E ^ { * } \subset \mathcal{A}$). Basic topics of interest here are the relation between the "fibres" $\Pi ^ { - 1 } ( w )$, $w \in E ^ { * * }$, and the relation between the geometry of $E$ and of $\mathcal{M} ( \mathcal{A} )$.

The spectrum $\mathcal{M}$ displays very different behaviour in the infinite-dimensional setting, in comparison with the finite-dimensional situation. As an illustration, every element $z \in E ^ { * * }$ corresponds to a homomorphism on $\mathcal{H} _ { b } ( E )$. Indeed, for each $n$ there is a linear extension mapping from $\mathcal{P} ( \square ^ { n } E ) \rightarrow \mathcal{P} ( \square ^ { n } E ^ { * * } )$. Applying this mapping to the Taylor series of a holomorphic function yields a multiplicative linear extension operator, mapping $f \in \mathcal{H} _ { b } ( E )$ to $\tilde { f } \in {\cal H} _ { b } ( E ^ { * * } )$; similar results hold for $\mathcal{A} = H ^ { \infty } ( B _ { E } )$ and $\mathcal{A} = \mathcal{H} _ { uc } ^ { \infty } ( B _ { E } )$. For example, each $z \in E ^ { * * }$ yields an element of $\mathcal{M} ( \mathcal{H} _ { b } ( E ) )$ via $\tilde { \delta _ { z } } : f \in \mathcal{H} _ { b } ( E ) \rightarrow \tilde { f } ( z ) \in \mathbf{C}$. A complete description of $\mathcal{M} ( \mathcal{H} _ { b } ( E ) )$ is unknown (1998) for general $E$, although it is not difficult to see that $\mathcal{M} ( \mathcal{H} _ { b } ( c _ { 0 } ) ) = \{ \widetilde { \delta _ { z } } : z \in \operatorname{l} _ { \infty } \}$. The question of whether the fourth dual of $E$ also provides points of the spectrum is connected with Arens regularity of $E$ [a7]. In any case, $\mathcal{M} ( \mathcal{H} _ { b } ( E ) )$ can be made into a semi-group with identity $\delta _ { 0 }$; the commutativity of this semi-group is related, once again, to Arens regularity of $E$ [a6].

It is natural to look for analytic structure in the spectrum $\mathcal{M} ( \mathcal{H} ^ { \infty } ( B _ { E } ) )$. In fact, every fibre $\mathcal{M} _ { z } \equiv \Pi ^ { - 1 } ( z )$ over $z \in \overline { B } _ { E ^{* *}}$ contains a copy of $( \beta \mathbf{N} \backslash \mathbf{N} ) \times \Delta$. In many situations, e.g. when $E$ is super-reflexive (cf., also Reflexive space), there is an analytic embedding of the unit ball of a non-separable Hilbert space into $\mathcal{M} _ { 0 }$. Further information has been obtained by J. Farmer [a8], who has studied analytic structure in fibres in $\text{I} _ { p }$-spaces. However, note that there is a peak set (cf. also Algebra of functions) for $\mathcal{H} ^ { \infty } ( B _ { \text{l}_p } )$ which is contained in $\mathcal{M} _ { 0 }$.

There has also been recent (1998) interest in the following areas:

reflexivity of $\mathcal{P} ( \square ^ { n } E )$;

algebras of weakly continuous holomorphic functions; and

Banach-algebra-valued holomorphic mappings.

Basic references on holomorphic functions in infinite dimensions are [a1], [a2], [a3]; a recent (1998) very helpful source, with an extensive bibliography, is [a4].

References

[a1] S. Dineen, "Complex analysis in localy convex spaces" , North-Holland (1981)
[a2] S. Dineen, "Complex analysis on infinite dimensional spaces" , Springer (1999)
[a3] J. Mujica, "Complex analysis in Banach spaces" , North-Holland (1986)
[a4] T. Gamelin, "Analytic functions on Banach spaces" , Complex Potential Theory (Montreal 1993) , NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. , 439 , Kluwer Acad. Publ. (1994) pp. 187–233
[a5] B. Stensones, "A proof of the Michael conjecture" preprint (1999)
[a6] R. Aron, B. Cole, T. Gamelin, "Spectra of algebras of analytic functions on a Banach space" J. Reine Angew. Math. , 415 (1991) pp. 51–93
[a7] R. Aron, P. Galindo, D. Garcia, M. Maestre, "Regularity and algebras of analytic functions in infinite dimensions" Trans. Amer. Math. Soc. , 384 : 2 (1996) pp. 543–559
[a8] J. Farmer, "Fibers over the sphere of a uniformly convex Banach space" Michigan Math. J. , 45 : 2 (1998) pp. 211–226
How to Cite This Entry:
Banach space of analytic functions with infinite-dimensional domains. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Banach_space_of_analytic_functions_with_infinite-dimensional_domains&oldid=18803
This article was adapted from an original article by Richard M. Aron (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article