Namespaces
Variants
Actions

Difference between revisions of "Associated function"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (typos)
Line 32: Line 32:
  
 
$$  
 
$$  
\gamma (z)  =  \sum _ {k=0 } ^  \infty   
+
\gamma (z)  =  \sum _ { k=0 } ^  \infty   
a _
+
 
\frac{k}{b} _ {k} z  ^ {-(k+1)}
+
 +
\frac{a _ k}{b _ k }   z  ^ {-(k+1)}
 
$$
 
$$
  
Line 56: Line 57:
 
f (z)  =  \sum _ {k=0 } ^  \infty   
 
f (z)  =  \sum _ {k=0 } ^  \infty   
  
\frac{a  ^ {k} }{k!}
+
\frac{a  ^ {k} }{ {k!}}
 
  z  ^ {k}
 
  z  ^ {k}
 
$$
 
$$

Revision as of 18:07, 6 April 2020


of a complex variable

A function which is obtained in some manner from a given function $ f(z) $ with the aid of some fixed function $ F(z) $. For example, if

$$ f (z) = \sum _ {k=0 } ^ \infty a _ {k} z ^ {k} $$

is an entire function and if

$$ F (z) = \sum _ {k=0 } ^ \infty b _ {k} z ^ {k} $$

is a fixed entire function with $ b _ {k} \neq 0 $, $ k \geq 0 $, then

$$ \gamma (z) = \sum _ { k=0 } ^ \infty \frac{a _ k}{b _ k } z ^ {-(k+1)} $$

is a function which is associated to $ f(z) $ by means of the function $ F(z) $; it is assumed that the series converges in some neighbourhood $ | z | > R $. The function $ f(z) $ is then represented in terms of $ \gamma (z) $ by the formula

$$ f (z) = \frac{1}{2 \pi i } \int\limits _ {| t | = R _ {1} > R } \gamma (t) F (zt) dt . $$

In particular, if

$$ f (z) = \sum _ {k=0 } ^ \infty \frac{a ^ {k} }{ {k!}} z ^ {k} $$

is an entire function of exponential type and $ F(z) = e ^ {z} $, then

$$ \gamma (z) = \sum _ {k=0 } ^ \infty a _ {k} z ^ {-(k+1)} $$

is the Borel-associated function of $ f(z) $( cf. Borel transform).

How to Cite This Entry:
Associated function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Associated_function&oldid=45288
This article was adapted from an original article by A.F. Leont'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article