Namespaces
Variants
Actions

Arithmetic space

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


number space, coordinate space, real $ n $-space

A Cartesian power $ \mathbf R ^ {n} $ of the set of real numbers $ \mathbf R $ having the structure of a linear topological space. The addition operation is here defined by the formula:

$$ ( x _ {1}, \dots, x _ {n} ) + ( x _ {1} ^ \prime , \dots, x _ {n} ^ \prime ) = ( x _ {1} + x _ {1} ^ \prime , \dots, x _ {n} + x _ {n} ^ \prime ); $$

while multiplication by a number $ \lambda \in \mathbf R $ is defined by the formula

$$ \lambda ( x _ {1}, \dots, x _ {n} ) = \ ( \lambda x _ {1}, \dots, \lambda x _ {n} ). $$

The topology in $ \mathbf R ^ {n} $ is the topology of the direct product of $ n $ copies of $ \mathbf R $; its base is formed by open $ n $-dimensional parallelepiped:

$$ I = \{ {( x _ {1}, \dots, x _ {n} ) \in \mathbf R ^ {n} } : { a _ {i} < x _ {i} < b _ {i} , i = 1, \dots, n } \} , $$

where the numbers $ a _ {1}, \dots, a _ {n} $ and $ b _ {1}, \dots, b _ {n} $ are given.

The real $ n $-space $ \mathbf R ^ {n} $ is also a normed space with respect to the norm

$$ \| x \| = \sqrt {x _ {1} ^ {2} + \dots +x _ {n} ^ {2} } , $$

where $ x = ( x _ {1}, \dots, x _ {n} ) \in \mathbf R ^ {n} $, and is a Euclidean space with respect to the scalar product

$$ \langle x, y \rangle = \sum _ {i=1 } ^ { n } x _ {i} y _ {i} , $$

where $ x = ( x _ {1}, \dots, x _ {n} ) , y = ( y _ {1}, \dots, y _ {n} ) \in \mathbf R ^ {n} $.

How to Cite This Entry:
Arithmetic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arithmetic_space&oldid=52179
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article