Namespaces
Variants
Actions

Difference between revisions of "Arithmetic group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
(LaTeX)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133201.png" /> of a [[Linear algebraic group|linear algebraic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133202.png" /> defined over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133203.png" /> of rational numbers, that satisfies the following condition: There exists a faithful rational representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133204.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133205.png" /> (cf. [[Representation theory|Representation theory]]) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133206.png" /> is commensurable with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133207.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133208.png" /> is the ring of integers (two subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a0133209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332010.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332011.png" /> are called commensurable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332012.png" /> is of finite index in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332013.png" /> and in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332014.png" />). This condition is then also satisfied for any other faithful representation defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332015.png" />. More generally, an arithmetic group is a subgroup of an algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332016.png" />, defined over a [[Global field|global field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332017.png" />, that is commensurable with the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332019.png" />-points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332021.png" /> is the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332022.png" />. An arithmetic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332023.png" /> is a [[Discrete subgroup|discrete subgroup]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332024.png" />.
+
A subgroup $H$ of a [[Linear algebraic group|linear algebraic group]] $G$ defined over the field $\mathbb{Q}$ of rational numbers, that satisfies the following condition: There exists a faithful rational representation $\rho : G \rightarrow \mathrm{GL}_n$ defined over $\mathbb{Q}$ (cf. [[Representation theory|Representation theory]]) such that $\rho(H)$ is commensurable with $\rho(G) \cap \mathrm{GL}(n,\mathbb{Z})$, where $\mathbb{Z}$ is the ring of integers (two subgroups $A$ and $B$ of a group $C$ are called commensurable if $A \cap B$ is of finite index in $A$ and in $B$). This condition is then also satisfied for any other faithful representation defined over $\mathbb{Q}$. More generally, an arithmetic group is a subgroup of an algebraic group $G$, defined over a [[Global field|global field]] $k$, that is commensurable with the group $G_O$ of $O$-points of $G$, where $O$ is the ring of integers of $k$. An arithmetic group $H \cap G_{\mathbb{R}}$ is a [[Discrete subgroup|discrete subgroup]] of $G_{\mathbb{R}}$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332025.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332026.png" />-epimorphism of algebraic groups, then the image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332027.png" /> of any arithmetic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332028.png" /> is an arithmetic group in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332029.png" /> [[#References|[1]]]. The name arithmetic group is sometimes also given to an abstract group that is isomorphic to an arithmetic subgroup of some algebraic group. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332030.png" /> is an algebraic number field, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332031.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332032.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332033.png" /> by restricting the field of definition from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332034.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332035.png" />, is called an arithmetic group. In the theory of Lie groups the name arithmetic subgroups is also given to images of arithmetic subgroups of the group of real points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332036.png" /> under the factorization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013320/a01332037.png" /> by compact normal subgroups.
+
If $\phi : G \rightarrow G_1$ is a $k$-epimorphism of algebraic groups, then the image $\phi(H)$ of any arithmetic group $H \subset G$ is an arithmetic group in $G_1$ [[#References|[1]]]. The name arithmetic group is sometimes also given to an abstract group that is isomorphic to an arithmetic subgroup of some algebraic group. Thus, if $k$ is an algebraic number field, the group $G_O \cong G'_{\mathbb{Z}}$, where $G'$ is obtained from $G$ by restricting the field of definition from $k$ to $\mathbb{Q}$, is called an arithmetic group. In the theory of Lie groups the name arithmetic subgroups is also given to images of arithmetic subgroups of the group of real points of $G_{\mathbb{R}}$ under the factorization of $G_{\mathbb{R}}$ by compact normal subgroups.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Borel,  "Ensembles fundamentaux pour les groups arithmétiques et formes automorphes" , Fac. Sci. Paris  (1967) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Borel,  Harish-Chandra,  "Arithmetic subgroups of algebraic groups"  ''Ann. of Math.'' , '''75'''  (1962)  pp. 485–535  {{MR|0147566}} {{ZBL|0107.14804}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> , ''Arithmetic groups and discontinuous subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc.  (1966) {{MR|}} {{ZBL|}} </TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Borel,  "Ensembles fundamentaux pour les groups arithmétiques et formes automorphes" , Fac. Sci. Paris  (1967)   {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Borel,  Harish-Chandra,  "Arithmetic subgroups of algebraic groups"  ''Ann. of Math.'' , '''75'''  (1962)  pp. 485–535  {{MR|0147566}} {{ZBL|0107.14804}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> , ''Arithmetic groups and discontinuous subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc.  (1966)   {{MR|}} {{ZBL|}} </TD></TR></table>
  
  

Latest revision as of 20:14, 14 October 2014

A subgroup $H$ of a linear algebraic group $G$ defined over the field $\mathbb{Q}$ of rational numbers, that satisfies the following condition: There exists a faithful rational representation $\rho : G \rightarrow \mathrm{GL}_n$ defined over $\mathbb{Q}$ (cf. Representation theory) such that $\rho(H)$ is commensurable with $\rho(G) \cap \mathrm{GL}(n,\mathbb{Z})$, where $\mathbb{Z}$ is the ring of integers (two subgroups $A$ and $B$ of a group $C$ are called commensurable if $A \cap B$ is of finite index in $A$ and in $B$). This condition is then also satisfied for any other faithful representation defined over $\mathbb{Q}$. More generally, an arithmetic group is a subgroup of an algebraic group $G$, defined over a global field $k$, that is commensurable with the group $G_O$ of $O$-points of $G$, where $O$ is the ring of integers of $k$. An arithmetic group $H \cap G_{\mathbb{R}}$ is a discrete subgroup of $G_{\mathbb{R}}$.

If $\phi : G \rightarrow G_1$ is a $k$-epimorphism of algebraic groups, then the image $\phi(H)$ of any arithmetic group $H \subset G$ is an arithmetic group in $G_1$ [1]. The name arithmetic group is sometimes also given to an abstract group that is isomorphic to an arithmetic subgroup of some algebraic group. Thus, if $k$ is an algebraic number field, the group $G_O \cong G'_{\mathbb{Z}}$, where $G'$ is obtained from $G$ by restricting the field of definition from $k$ to $\mathbb{Q}$, is called an arithmetic group. In the theory of Lie groups the name arithmetic subgroups is also given to images of arithmetic subgroups of the group of real points of $G_{\mathbb{R}}$ under the factorization of $G_{\mathbb{R}}$ by compact normal subgroups.

References

[1] A. Borel, "Ensembles fundamentaux pour les groups arithmétiques et formes automorphes" , Fac. Sci. Paris (1967)
[2] A. Borel, Harish-Chandra, "Arithmetic subgroups of algebraic groups" Ann. of Math. , 75 (1962) pp. 485–535 MR0147566 Zbl 0107.14804
[3] , Arithmetic groups and discontinuous subgroups , Proc. Symp. Pure Math. , 9 , Amer. Math. Soc. (1966)


Comments

Useful additional references are [a1][a3]. [a2] is an elementary introduction to the theory of arithmetic groups.

Conjectures of A. Selberg and I.I. Pyatetskii-Shapiro roughly state that for most semi-simple Lie groups discrete subgroups of finite co-volume are necessarily arithmetic. G.A. Margulis settled this question completely and, in particular, proved the conjectures in question. See Discrete subgroup for more detail.

References

[a1] A. Borel, "Arithmetic properties of linear algebraic groups" , Proc. Internat. Congress mathematicians (Stockholm, 1962) , Inst. Mittag-Leffler (1963) pp. 10–22 MR0175901 Zbl 0134.16502
[a2] A. Borel, "Introduction aux groupes arithmétiques" , Hermann (1969) MR0244260 Zbl 0186.33202
[a3] J.E. Humphreys, "Arithmetic groups" , Springer (1980) MR0584623 Zbl 0426.20029
How to Cite This Entry:
Arithmetic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arithmetic_group&oldid=21815
This article was adapted from an original article by V.P. Platonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article