Namespaces
Variants
Actions

Difference between revisions of "Arguesian lattice"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
a1106801.png
 +
$#A+1 = 298 n = 0
 +
$#C+1 = 298 : ~/encyclopedia/old_files/data/A110/A.1100680 Arguesian lattice,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Desarguesian lattice''
 
''Desarguesian lattice''
  
A [[Lattice|lattice]] in which the Arguesian law is valid, i.e. for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106801.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106802.png" />,
+
A [[Lattice|lattice]] in which the Arguesian law is valid, i.e. for all a _ {i} $,  
 +
$  b _ {i} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106803.png" /></td> </tr></table>
+
$$
 +
( a _ {0} + b _ {0} ) ( a _ {1} + b _ {1} ) ( a _ {2} + b _ {2} ) \leq  a _ {0} ( a _ {1} + c ) + b _ {0} ( b _ {1} + c ) ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106804.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106805.png" /> for any permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106806.png" /> [[#References|[a21]]]. Arguesian lattices form a variety (cf. also [[Algebraic systems, variety of|Algebraic systems, variety of]]), since within lattices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106807.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106808.png" />. A lattice is Arguesian if and only if it is a [[Modular lattice|modular lattice]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106809.png" /> (central perspectivity) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068010.png" /> (axial perspectivity). In an Arguesian lattice and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068012.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068014.png" />, the converse implication is valid too [[#References|[a24]]]. A lattice is Arguesian if and only if its [[Partial order|partial order]] dual is Arguesian.
+
$  c = c _ {0} ( c _ {1} + c _ {2} ) $,
 +
$  c _ {i} = ( a _ {j} + a _ {k} ) ( b _ {j} + b _ {k} ) $
 +
for any permutation $  i,j,k $[[#References|[a21]]]. Arguesian lattices form a variety (cf. also [[Algebraic systems, variety of|Algebraic systems, variety of]]), since within lattices $  p \leq  q $
 +
is equivalent to $  pq = p $.  
 +
A lattice is Arguesian if and only if it is a [[Modular lattice|modular lattice]] and $  ( a _ {0} + b _ {0} ) ( a _ {1} + b _ {1} ) \leq  a _ {2} + b _ {2} $(
 +
central perspectivity) implies $  c _ {2} \leq  c _ {0} + c _ {1} $(
 +
axial perspectivity). In an Arguesian lattice and for a _ {i} $,  
 +
$  b _ {i} $
 +
such that $  a _ {2} = ( a _ {0} + a _ {2} ) ( a _ {1} + a _ {2} ) $
 +
and $  b _ {2} = ( b _ {0} + b _ {2} ) ( b _ {1} + b _ {2} ) $,  
 +
the converse implication is valid too [[#References|[a24]]]. A lattice is Arguesian if and only if its [[Partial order|partial order]] dual is Arguesian.
  
 
===Examples of Arguesian lattices.===
 
===Examples of Arguesian lattices.===
  
 +
1) The lattice  $  L ( P ) $
 +
of subspaces of a [[Projective space|projective space]]  $  P $
 +
is Arguesian if and only if the [[Desargues assumption|Desargues assumption]] is satisfied in  $  P $.
  
1) The lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068015.png" /> of subspaces of a [[Projective space|projective space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068016.png" /> is Arguesian if and only if the [[Desargues assumption|Desargues assumption]] is satisfied in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068017.png" />.
+
2) Every lattice $  L ( _ {R} M ) $
 
+
of submodules of an $  R $-
2) Every lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068018.png" /> of submodules of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068019.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068020.png" /> (cf. also [[Module|Module]]) and any lattice of subobjects of an object in an [[Abelian category|Abelian category]].
+
module $  M $(
 +
cf. also [[Module|Module]]) and any lattice of subobjects of an object in an [[Abelian category|Abelian category]].
  
 
3) Every lattice of normal subgroups (respectively, congruence relations; cf. [[Normal subgroup|Normal subgroup]]; [[Congruence (in algebra)|Congruence (in algebra)]]) of a [[Group|group]] and any lattice of permuting [[Equivalence|equivalence]] relations [[#References|[a21]]] (also called a linear lattice).
 
3) Every lattice of normal subgroups (respectively, congruence relations; cf. [[Normal subgroup|Normal subgroup]]; [[Congruence (in algebra)|Congruence (in algebra)]]) of a [[Group|group]] and any lattice of permuting [[Equivalence|equivalence]] relations [[#References|[a21]]] (also called a linear lattice).
Line 18: Line 47:
 
4) Considering all lattices of congruence relations of algebraic systems (cf. [[Algebraic system|Algebraic system]]) in a variety, the Arguesian law is equivalent to the modular law.
 
4) Considering all lattices of congruence relations of algebraic systems (cf. [[Algebraic system|Algebraic system]]) in a variety, the Arguesian law is equivalent to the modular law.
  
5) Every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068021.png" />-distributive [[Modular lattice|modular lattice]] (cf. also [[Distributive lattice|Distributive lattice]]): <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068022.png" />, i.e. without a [[Projective plane|projective plane]] in the variety.
+
5) Every $  2 $-
 +
distributive [[Modular lattice|modular lattice]] (cf. also [[Distributive lattice|Distributive lattice]]): $  w ( x + y + z ) = w ( x + y ) + w ( x + z ) + w ( y + z ) $,  
 +
i.e. without a [[Projective plane|projective plane]] in the variety.
  
 
The Arguesian law can be characterized in terms of forbidden subconfigurations, but not in terms of sublattices [[#References|[a17]]]. Weaker versions involve less variables and higher-dimensional versions have increasing strength and number of variables; all are valid in linear lattices [[#References|[a10]]]. The basic structure theory relies on the modular law, cf. [[Modular lattice|Modular lattice]] and [[#References|[a3]]], [[#References|[a27]]]. For its role in the congruence and commutator theory of algebraic systems, cf. [[#References|[a12]]]. Large parts of [[Dimension theory|dimension theory]] for rings and modules can be conveniently done within modular lattices [[#References|[a29]]].
 
The Arguesian law can be characterized in terms of forbidden subconfigurations, but not in terms of sublattices [[#References|[a17]]]. Weaker versions involve less variables and higher-dimensional versions have increasing strength and number of variables; all are valid in linear lattices [[#References|[a10]]]. The basic structure theory relies on the modular law, cf. [[Modular lattice|Modular lattice]] and [[#References|[a3]]], [[#References|[a27]]]. For its role in the congruence and commutator theory of algebraic systems, cf. [[#References|[a12]]]. Large parts of [[Dimension theory|dimension theory]] for rings and modules can be conveniently done within modular lattices [[#References|[a29]]].
  
 
==Projective spaces.==
 
==Projective spaces.==
See [[#References|[a16]]]. Every modular lattice with complements (cf. [[Lattice with complements|Lattice with complements]]) can be embedded into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068023.png" /> for a projective space on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068024.png" /> of its maximal filters (cf. [[Filter|Filter]]), actually a sublattice of the ideal lattice of the filter lattice (with filters ordered by inverse inclusion), whence preserving all identities. This Frink embedding generalizes the Stone representation theorem for Boolean algebras (cf. [[Boolean algebra|Boolean algebra]]). The coordinatization theorem of [[Projective geometry|projective geometry]] implies that any Arguesian relatively complemented lattice can be embedded into a [[Direct product|direct product]] of lattices of subspaces of vector spaces (cf. [[Vector space|Vector space]]) [[#References|[a22]]].
+
See [[#References|[a16]]]. Every modular lattice with complements (cf. [[Lattice with complements|Lattice with complements]]) can be embedded into $  L ( P ) $
 +
for a projective space on the set $  P $
 +
of its maximal filters (cf. [[Filter|Filter]]), actually a sublattice of the ideal lattice of the filter lattice (with filters ordered by inverse inclusion), whence preserving all identities. This Frink embedding generalizes the Stone representation theorem for Boolean algebras (cf. [[Boolean algebra|Boolean algebra]]). The coordinatization theorem of [[Projective geometry|projective geometry]] implies that any Arguesian relatively complemented lattice can be embedded into a [[Direct product|direct product]] of lattices of subspaces of vector spaces (cf. [[Vector space|Vector space]]) [[#References|[a22]]].
  
A compact element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068025.png" /> of a modular [[Algebraic lattice|algebraic lattice]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068026.png" /> is called a point if it is a [[join-irreducible element]], i.e. has a unique lower cover <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068027.png" />. If each element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068028.png" /> is a join of points (e.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068029.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068030.png" /> can be understood as the subspace lattice of an ordered linear space on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068031.png" /> of points: the order is induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068032.png" />. Points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068035.png" /> are collinear if they are distinct and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068036.png" />, and a subspace is a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068037.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068038.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068039.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068040.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068043.png" /> collinear implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068044.png" />. This can also be viewed as a presentation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068045.png" /> as a [[Semi-lattice|semi-lattice]]. Instead of all collinearities one may use a base of lines: for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068046.png" /> a maximal set of points with pairwise join <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068047.png" />. For an abstract ordered linear space one has to require that collinearity is a totally symmetric relation, that collinear points are incomparable, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068051.png" /> collinear implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068052.png" />, that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068056.png" /> collinear there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068058.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068061.png" /> are collinear or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068062.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068063.png" />, and, finally, a more elaborate version of the triangle axiom. Then the subspaces form a lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068064.png" /> as above and each modular lattice can be naturally embedded into such, preserving identities.
+
A compact element $  p $
 +
of a modular [[Algebraic lattice|algebraic lattice]] $  L $
 +
is called a point if it is a [[join-irreducible element]], i.e. has a unique lower cover $  p _ {*} $.  
 +
If each element of $  L $
 +
is a join of points (e.g., if $  { \mathop{\rm dim} } L < \infty $),  
 +
then $  L $
 +
can be understood as the subspace lattice of an ordered linear space on the set $  P $
 +
of points: the order is induced by $  L $.  
 +
Points $  p $,  
 +
$  q $,  
 +
$  r $
 +
are collinear if they are distinct and $  p + q = p + r = q + r $,  
 +
and a subspace is a subset $  X $
 +
such that $  q \leq  p \in X $
 +
implies $  q \in X $,  
 +
and $  p,q \in X $
 +
with $  p $,  
 +
$  q $,  
 +
$  r $
 +
collinear implies $  r \in X $.  
 +
This can also be viewed as a presentation of $  L $
 +
as a [[Semi-lattice|semi-lattice]]. Instead of all collinearities one may use a base of lines: for each element $  l = p + q $
 +
a maximal set of points with pairwise join $  l $.  
 +
For an abstract ordered linear space one has to require that collinearity is a totally symmetric relation, that collinear points are incomparable, that $  p,q \leq  s $
 +
and $  p $,  
 +
$  q $,  
 +
$  r $
 +
collinear implies $  r \leq  s $,  
 +
that for $  r  ^  \prime  \leq  r $
 +
and $  p $,  
 +
$  q $,  
 +
$  r $
 +
collinear there are $  p  ^  \prime  \leq  p $
 +
and $  q  ^  \prime  \leq  q $
 +
such that $  p  ^  \prime  $,  
 +
$  q  ^  \prime  $,  
 +
$  r  ^  \prime  $
 +
are collinear or $  r  ^  \prime  \leq  p $
 +
or $  r  ^  \prime  \leq  q $,  
 +
and, finally, a more elaborate version of the triangle axiom. Then the subspaces form a lattice $  L $
 +
as above and each modular lattice can be naturally embedded into such, preserving identities.
  
 
==Subdirect products and congruences.==
 
==Subdirect products and congruences.==
See [[#References|[a3]]], [[#References|[a20]]]. Every lattice is a [[Subdirect product|subdirect product]] of subdirectly irreducible homomorphic images (cf. [[Homomorphism|Homomorphism]]). By Jónsson's lemma, the subdirect irreducibles in the variety generated by a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068065.png" /> are homomorphic images of sublattices of ultraproducts from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068066.png" />. A pair of complementary central elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068068.png" /> provides a direct decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068069.png" />, a neutral element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068070.png" /> implies a subdirect decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068071.png" />.
+
See [[#References|[a3]]], [[#References|[a20]]]. Every lattice is a [[Subdirect product|subdirect product]] of subdirectly irreducible homomorphic images (cf. [[Homomorphism|Homomorphism]]). By Jónsson's lemma, the subdirect irreducibles in the variety generated by a class $  {\mathcal C} $
 +
are homomorphic images of sublattices of ultraproducts from $  {\mathcal C} $.  
 +
A pair of complementary central elements $  u $,  
 +
$  v $
 +
provides a direct decomposition $  x \mapsto ( xu,xv ) $,  
 +
a neutral element $  u $
 +
implies a subdirect decomposition $  x \mapsto ( xu,x + u ) $.
  
Any [[Congruence|congruence]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068072.png" /> on a modular lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068073.png" /> is determined by its set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068074.png" /> of quotients, where a quotient is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068075.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068076.png" />, equivalently, an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068077.png" />. A pair of quotients is projective if it belongs to the equivalence relation generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068079.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068081.png" />. A subquotient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068082.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068083.png" /> is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068084.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068085.png" /> is generated by a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068086.png" /> of quotients, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068087.png" /> is the transitive closure of the set of all quotients projective to some subquotient of a quotient in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068088.png" />. The congruences form a [[Brouwer lattice|Brouwer lattice]], with the pseudo-complement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068089.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068090.png" /> given by the quotients not having any subquotient projective to a subquotient of a quotient in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068091.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068092.png" /> is subdirectly decomposed into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068094.png" /> and each subdirectly indecomposable factor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068095.png" /> is a homomorphic image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068096.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068097.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068098.png" /> is onto, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068099.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680100.png" /> (which then preserves sups) and the dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680101.png" /> exist, i.e. for a bounded image, then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680102.png" /> one finds that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680103.png" /> is the transitive closure of prime quotients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680104.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680106.png" /> for some prime quotient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680107.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680108.png" />. For any onto mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680109.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680110.png" /> not factoring through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680111.png" />, this splitting method yields the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680112.png" /> for prime quotients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680113.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680114.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680115.png" /> is generated by a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680116.png" />, starting with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680117.png" /> and iterating, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680118.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680119.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680120.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680121.png" /> ranging over all subtriples of lines of a given base, leads to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680122.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680123.png" /> [[#References|[a28]]].
+
Any [[Congruence|congruence]] $  \theta $
 +
on a modular lattice $  L $
 +
is determined by its set $  Q ( \theta ) $
 +
of quotients, where a quotient is a pair $  {a / b } $
 +
with a \geq  b $,  
 +
equivalently, an interval $  [ b,a ] $.  
 +
A pair of quotients is projective if it belongs to the equivalence relation generated by $  {a / b } $,  
 +
$  {c / d } $
 +
such that $  a = b + c $
 +
and $  d = bc $.  
 +
A subquotient $  {c / d } $
 +
of $  {a / b } $
 +
is such that $  b \leq  d \leq  c \leq  a $.  
 +
If $  \theta $
 +
is generated by a set $  \Gamma $
 +
of quotients, then $  Q ( \theta ) $
 +
is the transitive closure of the set of all quotients projective to some subquotient of a quotient in $  \Gamma $.  
 +
The congruences form a [[Brouwer lattice|Brouwer lattice]], with the pseudo-complement $  \theta  ^ {*} $
 +
of $  \theta $
 +
given by the quotients not having any subquotient projective to a subquotient of a quotient in $  \Gamma $.  
 +
$  L $
 +
is subdirectly decomposed into $  L/ \theta $
 +
and $  L/ \theta  ^ {*} $
 +
and each subdirectly indecomposable factor of $  L $
 +
is a homomorphic image of $  L/ \theta $
 +
or $  L/ \theta  ^ {*} $.  
 +
If $  \pi : L \rightarrow S $
 +
is onto, $  { \mathop{\rm dim} } ( S ) < \infty $,  
 +
and if $  {\pi rhat } x = \inf  \{ {a \in L } : {\pi a = x } \} $(
 +
which then preserves sups) and the dual $  {\widehat \pi  } $
 +
exist, i.e. for a bounded image, then for $  \theta = { \mathop{\rm Ker} } \pi $
 +
one finds that $  \theta  ^ {*} $
 +
is the transitive closure of prime quotients $  {a / b } $
 +
with $  a = b + {\pi rhat } x $,  
 +
$  b = a {\widehat \pi  } y $
 +
for some prime quotient $  {x / y } $
 +
in $  S $.  
 +
For any onto mapping $  \psi : L \rightarrow M $
 +
with $  \pi $
 +
not factoring through $  \psi $,  
 +
this splitting method yields the relations $  \psi {\pi rhat } y \leq  \psi {\widehat \pi  } x $
 +
for prime quotients $  {x / y } $
 +
in $  S $.  
 +
If $  L $
 +
is generated by a finite set $  E $,  
 +
starting with $  \sigma _ {0} x = \inf  \{ {e \in E } : {\pi e \leq  x } \} $
 +
and iterating, $  \sigma _ {k + 1 }  x = \inf  \sigma _ {k} r ( \sigma _ {k} p + \sigma _ {k} q ) $
 +
with $  p $,  
 +
$  q $,  
 +
$  r $
 +
ranging over all subtriples of lines of a given base, leads to $  \sigma _ {n + 1 }  = \sigma _ {n} = {\pi rhat } $
 +
for some $  n $[[#References|[a28]]].
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680124.png" />, each congruence is determined by its prime quotients, either those in a given [[Composition sequence|composition sequence]] or those of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680125.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680126.png" /> a point. It follows that the congruences form a finite [[Boolean algebra|Boolean algebra]] and are in one-to-one correspondence with unions of connected components of the point set under the binary relation: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680127.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680128.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680129.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680130.png" /> collinear. Moreover, the subdirectly indecomposable factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680131.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680132.png" /> are simple, i.e. correspond to maximal congruences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680133.png" />, and the dimensions add up: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680134.png" />. The connected components associated with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680135.png" /> are disjoint and are isomorphic images of the spaces of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680136.png" /> via <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680137.png" />. Thus, the space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680138.png" /> can be constructed as the disjoint union of the spaces of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680139.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680140.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680141.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680142.png" /> depends only on the subdirect product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680143.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680144.png" /> and can be computed, in the scaffolding construction, as the pointwise largest sup-homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680145.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680146.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680147.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680148.png" /> for a given set of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680149.png" />.
+
For $  { \mathop{\rm dim} } L < \infty $,  
 +
each congruence is determined by its prime quotients, either those in a given [[Composition sequence|composition sequence]] or those of the form $  {p / {p _ {*} } } $,  
 +
$  p $
 +
a point. It follows that the congruences form a finite [[Boolean algebra|Boolean algebra]] and are in one-to-one correspondence with unions of connected components of the point set under the binary relation: $  \exists r $
 +
with $  p $,  
 +
$  q $,  
 +
$  r $
 +
collinear. Moreover, the subdirectly indecomposable factors $  L _ {i} $
 +
of $  L $
 +
are simple, i.e. correspond to maximal congruences $  \theta _ {i} $,  
 +
and the dimensions add up: $  { \mathop{\rm dim} } L = \sum { \mathop{\rm dim} } L _ {i} $.  
 +
The connected components associated with the $  \theta _ {i}  ^ {*} $
 +
are disjoint and are isomorphic images of the spaces of the $  L _ {i} $
 +
via $  { {\pi _ {i} } rhat } $.  
 +
Thus, the space of $  L $
 +
can be constructed as the disjoint union of the spaces of the $  L _ {i} $
 +
with $  p _ {i} \leq  q _ {j} $
 +
if and only if $  \pi _ {j} { {\pi _ {i} } rhat } p _ {i} \leq  q _ {j} $
 +
where $  \pi _ {j} { {\pi _ {i} } rhat } $
 +
depends only on the subdirect product of $  L _ {i} $
 +
and $  L _ {j} $
 +
and can be computed, in the scaffolding construction, as the pointwise largest sup-homomorphism $  \alpha _ {ij }  $
 +
of $  L _ {i} $
 +
into $  L _ {j} $
 +
such that $  \alpha _ {ij }  \pi _ {i} e \leq  \pi _ {j} e $
 +
for a given set of generators $  e $.
  
 
==Glueing.==
 
==Glueing.==
See [[#References|[a8]]]. A tolerance relation on a lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680150.png" /> is a [[Binary relation|binary relation]] that is reflexive, symmetric, and compatible, i.e. a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680151.png" />. A block is a maximal subset with every pair of elements in relation, whence a convex sublattice. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680152.png" /> of blocks has a lattice structure. A convenient way to think of this is as a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680153.png" /> of embeddings of a (not necessarily modular) skeleton lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680154.png" /> into the filter, respectively ideal, lattice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680155.png" /> preserving finite sups, respectively infs, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680156.png" /> is non-empty for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680157.png" />, namely one of the blocks. A relevant tolerance for modular lattices is given by the relation that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680158.png" /> be complemented. Its blocks are the maximal relatively complemented convex sublattices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680159.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680160.png" /> is then the prime skeleton. One has a glueing if the smallest congruence extending the tolerance is total; this occurs for modular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680161.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680162.png" /> and the prime skeleton tolerance. The neutrality of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680163.png" /> can be shown with suitable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680164.png" /> via an order-preserving mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680165.png" /> turning <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680166.png" /> into a glueing with blocks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680167.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680168.png" />; this happens if: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680169.png" /> is sup-preserving, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680170.png" /> is inf-preserving, and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680171.png" /> in some generating set there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680172.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680173.png" />.
+
See [[#References|[a8]]]. A tolerance relation on a lattice $  L $
 +
is a [[Binary relation|binary relation]] that is reflexive, symmetric, and compatible, i.e. a subalgebra of $  L \times L $.  
 +
A block is a maximal subset with every pair of elements in relation, whence a convex sublattice. The set $  S $
 +
of blocks has a lattice structure. A convenient way to think of this is as a pair $  \sigma, \gamma $
 +
of embeddings of a (not necessarily modular) skeleton lattice $  S $
 +
into the filter, respectively ideal, lattice of $  L $
 +
preserving finite sups, respectively infs, such that $  L ( x ) = \sigma ( x ) \cap \gamma ( x ) $
 +
is non-empty for each $  x $,  
 +
namely one of the blocks. A relevant tolerance for modular lattices is given by the relation that $  [ ab,a + b ] $
 +
be complemented. Its blocks are the maximal relatively complemented convex sublattices of $  L $,  
 +
and $  S $
 +
is then the prime skeleton. One has a glueing if the smallest congruence extending the tolerance is total; this occurs for modular $  L $
 +
of $  { \mathop{\rm dim} } L < \infty $
 +
and the prime skeleton tolerance. The neutrality of $  u \in L $
 +
can be shown with suitable $  S $
 +
via an order-preserving mapping $  \alpha : S \rightarrow L $
 +
turning $  L $
 +
into a glueing with blocks $  [ u \alpha x, u + \alpha x ] $,  
 +
$  x \in S $;  
 +
this happens if: $  x \mapsto u \alpha x $
 +
is sup-preserving, $  x \mapsto u + \alpha x $
 +
is inf-preserving, and for each $  e $
 +
in some generating set there is an $  x \in S $
 +
with $  e = u \alpha x + ue $.
  
Every lattice with a tolerance gives rise to a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680174.png" /> of adjunctions between the blocks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680175.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680176.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680177.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680178.png" />, satisfying certain axioms. Namely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680179.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680180.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680181.png" />. Conversely, each such system defines a [[Pre-order|pre-order]] on the disjoint union of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680182.png" /> and, factoring by the associated equivalence relation, a lattice with tolerance having blocks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680183.png" />. Glueing always produces a modular lattice from modular blocks, but only in special cases the impact of the Arguesian law and various kinds of representability are understood (a necessary condition is that any pair of adjunctions matching coordinate rings of two frames induces an [[Anti-isomorphism of partially ordered sets|anti-isomorphism of partially ordered sets]] [[#References|[a17]]]). For the combinatorial analysis of subgroup lattices of finite Abelian groups, cf. [[#References|[a2]]].
+
Every lattice with a tolerance gives rise to a system $  \phi _ {xy }  , \psi _ {yx }  $
 +
of adjunctions between the blocks $  L ( x ) $,  
 +
$  L ( y ) $,  
 +
$  x \leq  y $
 +
in $  S $,  
 +
satisfying certain axioms. Namely, $  \phi _ {xy }  a \leq  b $
 +
if and only if a \leq  b $
 +
if and only if a \leq  \psi _ {yx }  b $.  
 +
Conversely, each such system defines a [[Pre-order|pre-order]] on the disjoint union of the $  L ( x ) $
 +
and, factoring by the associated equivalence relation, a lattice with tolerance having blocks $  L ( x ) $.  
 +
Glueing always produces a modular lattice from modular blocks, but only in special cases the impact of the Arguesian law and various kinds of representability are understood (a necessary condition is that any pair of adjunctions matching coordinate rings of two frames induces an [[Anti-isomorphism of partially ordered sets|anti-isomorphism of partially ordered sets]] [[#References|[a17]]]). For the combinatorial analysis of subgroup lattices of finite Abelian groups, cf. [[#References|[a2]]].
  
 
==Coordinates.==
 
==Coordinates.==
See [[#References|[a5]]], [[#References|[a7]]]. J. von Neumann introduced the lattice-theoretic analogue of projective coordinate systems: an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680185.png" />-frame consists of independent elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680186.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680187.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680188.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680189.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680190.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680191.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680192.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680193.png" />. There are equivalent variants. Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680194.png" /> provides frames <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680195.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680196.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680197.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680198.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680199.png" />, of sublattices which can be used to derive frames satisfying relations. The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680200.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680201.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680202.png" /> form the coordinate domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680203.png" />. For a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680204.png" />-module with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680205.png" /> one has the canonical frame <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680206.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680207.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680208.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680209.png" /> or, in the presence of the Arguesian law, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680210.png" /> [[#References|[a6]]], then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680211.png" /> are turned into rings (cf. [[Ring|Ring]]) isomorphic via <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680212.png" />, respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680213.png" />, with unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680214.png" /> and
+
See [[#References|[a5]]], [[#References|[a7]]]. J. von Neumann introduced the lattice-theoretic analogue of projective coordinate systems: an $  n $-
 +
frame consists of independent elements a _ {i} $,  
 +
$  a _ {ij }  = a _ {ji }  $,
 +
$  i,j \leq  n $,  
 +
$  i \neq j $,  
 +
such that $  a _ {i} a _ {ij }  = 0 $,
 +
$  \sum a _ {i} = 1 $,
 +
$  a _ {i} + a _ {ij }  = a _ {i} + a _ {j} $,  
 +
and $  a _ {ik }  = ( a _ {i} + a _ {j} ) ( a _ {ij }  + a _ {jk }  ) $.  
 +
There are equivalent variants. Any $  b _ {1} \leq  a _ {1} $
 +
provides frames $  b _ {i} = a _ {i} a _ {1i }  $,  
 +
$  b _ {ij }  = a _ {ij }  ( b _ {i} + b _ {j} ) $
 +
and $  c _ {i} = a _ {i} + v $,  
 +
$  c _ {ij }  = a _ {ij }  + v $,  
 +
where $  v = \sum b _ {i} $,  
 +
of sublattices which can be used to derive frames satisfying relations. The elements $  r _ {ij }  $
 +
such that $  r _ {j} a _ {j} = 0 $
 +
and  $  r _ {ij }  + a _ {j} = a _ {i} + a _ {j} $
 +
form the coordinate domain $  R _ {ij }  $.  
 +
For a free $  R $-
 +
module with basis $  e _ {i} $
 +
one has the canonical frame $  Re _ {i} $,  
 +
$  R ( e _ {i} - e _ {j} ) $
 +
and $  r _ {ij }  = R ( e _ {i} - re _ {j} ) $.  
 +
If $  n \geq  4 $
 +
or, in the presence of the Arguesian law, $  n = 3 $[[#References|[a6]]], then the $  R _ {ij }  $
 +
are turned into rings (cf. [[Ring|Ring]]) isomorphic via $  r _ {ij }  \mapsto r _ {ik }  = ( a _ {i} + a _ {k} ) ( r _ {ij }  + a _ {jk }  ) $,  
 +
respectively $  r _ {ij }  \mapsto r _ {hj }  = ( a _ {h} + a _ {j} ) ( r _ {ij }  + a _ {ih }  ) $,  
 +
with unit a _ {ij }  $
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680215.png" /></td> </tr></table>
+
$$
 +
r _ {ij }  \oplus s _ {ij }  = ( a _ {i} + a _ {j} ) [ ( r _ {ij }  + a _ {k} ) ( a _ {ik }  + a _ {j} ) + s _ {kj }  ] ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680216.png" /></td> </tr></table>
+
$$
 +
r _ {ij }  \otimes s _ {ij }  = ( a _ {i} + a _ {j} ) ( r _ {ik }  + s _ {kj }  ) .
 +
$$
  
Every modular lattice generated by a frame can be generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680217.png" /> elements. Every finitely-generated [[Semi-group|semi-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680218.png" /> can be embedded into the multiplicative semi-group of the coordinate ring of a suitable frame in some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680219.png" />-generated sublattice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680220.png" /> over a given [[Field|field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680221.png" /> (finite dimensional if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680222.png" /> is finite).
+
Every modular lattice generated by a frame can be generated by $  4 $
 +
elements. Every finitely-generated [[Semi-group|semi-group]] $  S $
 +
can be embedded into the multiplicative semi-group of the coordinate ring of a suitable frame in some $  5 $-
 +
generated sublattice of $  L ( _ {k} V ) $
 +
over a given [[Field|field]] $  k $(
 +
finite dimensional if $  S $
 +
is finite).
  
A complemented Arguesian lattice possessing a large partial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680224.png" />-frame (i.e., a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680225.png" />-frame of a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680226.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680227.png" /> having a complement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680228.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680229.png" /> perspective to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680230.png" />) or being simple of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680231.png" /> is isomorphic to the lattice of principal right ideals of some regular ring [[#References|[a23]]]. Under suitable richness assumptions, lattices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680232.png" /> have been characterized for various classes of rings via the Arguesian law and geometric conditions on the lattice, e.g. for completely primary uniserial rings [[#References|[a24]]] and left Ore domains. There are results on lattice isomorphisms induced by semi-linear mappings, respectively Morita equivalences (cf. also [[Morita equivalence|Morita equivalence]]), and on lattice homomorphisms induced by tensoring [[#References|[a1]]]. Abelian lattices, having certain features of Abelian categories, can be embedded into subgroup lattices of Abelian groups. This includes algebraic modular lattices having an infinite frame [[#References|[a32]]].
+
A complemented Arguesian lattice possessing a large partial $  3 $-
 +
frame (i.e., a $  3 $-
 +
frame of a section $  [ 0,u ] $
 +
with $  u $
 +
having a complement $  d = \sum _ {i = 1 }  ^ {m} x _ {i} $,  
 +
$  x _ {i} $
 +
perspective to $  y _ {i} \leq  a _ {1} $)  
 +
or being simple of dimension $  \geq  3 $
 +
is isomorphic to the lattice of principal right ideals of some regular ring [[#References|[a23]]]. Under suitable richness assumptions, lattices $  L ( _ {R} M ) $
 +
have been characterized for various classes of rings via the Arguesian law and geometric conditions on the lattice, e.g. for completely primary uniserial rings [[#References|[a24]]] and left Ore domains. There are results on lattice isomorphisms induced by semi-linear mappings, respectively Morita equivalences (cf. also [[Morita equivalence|Morita equivalence]]), and on lattice homomorphisms induced by tensoring [[#References|[a1]]]. Abelian lattices, having certain features of Abelian categories, can be embedded into subgroup lattices of Abelian groups. This includes algebraic modular lattices having an infinite frame [[#References|[a32]]].
  
 
==Equational theory.==
 
==Equational theory.==
See [[#References|[a5]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a20]]]. The class of all linear lattices, respectively the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680233.png" /> of all lattices embeddable into some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680234.png" />, forms a [[Quasi-variety|quasi-variety]], since it arises from a projective class in the sense of Mal'tsev. Natural axiom systems and proof theories for quasi-identities have been given, cf. [[#References|[a10]]], [[#References|[a33]]]. The latter present identities via graphs. On the other hand, there is no finitely-axiomatized quasi-variety containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680235.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680236.png" /> some field, and satisfying all higher-dimensional Arguesian laws. Also, every quasi-variety of modular lattices containing some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680237.png" /> also contains a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680238.png" />-generated finitely-presented lattice with unsolvable [[Decision problem|decision problem]] for words [[#References|[a18]]].
+
See [[#References|[a5]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a20]]]. The class of all linear lattices, respectively the class $  {\mathcal L} ( R ) $
 +
of all lattices embeddable into some $  L ( _ {R} M ) $,  
 +
forms a [[Quasi-variety|quasi-variety]], since it arises from a projective class in the sense of Mal'tsev. Natural axiom systems and proof theories for quasi-identities have been given, cf. [[#References|[a10]]], [[#References|[a33]]]. The latter present identities via graphs. On the other hand, there is no finitely-axiomatized quasi-variety containing $  L ( k ^ {( \omega ) } ) $,  
 +
$  k $
 +
some field, and satisfying all higher-dimensional Arguesian laws. Also, every quasi-variety of modular lattices containing some $  L ( k ^ {( \omega ) } ) $
 +
also contains a $  5 $-
 +
generated finitely-presented lattice with unsolvable [[Decision problem|decision problem]] for words [[#References|[a18]]].
  
Identities are preserved when passing to the ideal lattice; thus, one may assume algebraicity. Frames are projective systems of generators and relations within modular lattices: for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680239.png" /> there are terms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680240.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680241.png" /> in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680242.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680243.png" /> such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680244.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680245.png" /> form a frame in a sublattice for any choice of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680246.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680247.png" /> in a modular lattice and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680248.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680249.png" /> if these happen to form a frame already. This allows one to translate divisibility of integer multiples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680250.png" /> in a ring (more generally, solvability of systems of linear equations with integer coefficients) into lattice identities. The converse has been done in [[#References|[a19]]] for lattices of submodules: solving the decision problem for words in free lattices in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680251.png" />, whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680252.png" /> has decidable divisibility of integers (e.g. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680253.png" />), and providing a complete list of all varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680254.png" />, each generated by finite-dimensional members (related ideas occur in the model theory of modules [[#References|[a31]]]). In contrast, no finitely-axiomatized variety of modular lattices containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680255.png" /> is generated by its finite-dimensional members. For free lattices with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680256.png" /> generators in the quasi-varieties of all Arguesian linear, respectively normal, subgroup lattices the decision problem remains open (in contrast to the negative answer for modular lattices [[#References|[a11]]]). The corresponding variety containments, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680257.png" /> included, are all proper [[#References|[a25]]], [[#References|[a26]]], [[#References|[a30]]]. There are rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680258.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680259.png" /> not a variety, but the status for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680260.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680261.png" /> a field, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680262.png" />, normal subgroup and linear lattices is unknown. Yet, for finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680263.png" /> a retraction into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680264.png" /> is possible. The variety generated by modular lattices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680265.png" /> can be finitely axiomatized; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680266.png" /> the lattice of subvarieties and the covering varieties have been determined [[#References|[a20]]]. Finitely-generated varieties are finitely axiomatizable (this does not extend to quasi-varieties).
+
Identities are preserved when passing to the ideal lattice; thus, one may assume algebraicity. Frames are projective systems of generators and relations within modular lattices: for each $  n $
 +
there are terms a _ {i} $,  
 +
a _ {ij }  $
 +
in the variables $  x _ {i} $,  
 +
$  z _ {ij }  $
 +
such that the a _ {i} $,  
 +
a _ {ij }  $
 +
form a frame in a sublattice for any choice of the $  x _ {i} $,  
 +
$  z _ {ij }  $
 +
in a modular lattice and $  a _ {i} = x _ {i} $,
 +
a _ {ij }  = z _ {ij }  $
 +
if these happen to form a frame already. This allows one to translate divisibility of integer multiples of $  1 $
 +
in a ring (more generally, solvability of systems of linear equations with integer coefficients) into lattice identities. The converse has been done in [[#References|[a19]]] for lattices of submodules: solving the decision problem for words in free lattices in $  {\mathcal L} ( R ) $,  
 +
whenever $  R $
 +
has decidable divisibility of integers (e.g. $  R = \mathbf Z $),  
 +
and providing a complete list of all varieties $  H {\mathcal L} ( R ) $,  
 +
each generated by finite-dimensional members (related ideas occur in the model theory of modules [[#References|[a31]]]). In contrast, no finitely-axiomatized variety of modular lattices containing $  L ( Q ^ {( \omega ) } ) $
 +
is generated by its finite-dimensional members. For free lattices with $  n \geq  4 $
 +
generators in the quasi-varieties of all Arguesian linear, respectively normal, subgroup lattices the decision problem remains open (in contrast to the negative answer for modular lattices [[#References|[a11]]]). The corresponding variety containments, with $  H {\mathcal L} ( Z ) $
 +
included, are all proper [[#References|[a25]]], [[#References|[a26]]], [[#References|[a30]]]. There are rings $  R $
 +
with $  {\mathcal L} ( R ) $
 +
not a variety, but the status for $  {\mathcal L} ( k ) $,  
 +
$  k $
 +
a field, $  {\mathcal L} ( Z ) $,  
 +
normal subgroup and linear lattices is unknown. Yet, for finite-dimensional $  L \in H {\mathcal L} ( k ) $
 +
a retraction into $  {\mathcal L} ( k ) $
 +
is possible. The variety generated by modular lattices of $  { \mathop{\rm dim} } ( L ) \leq  n $
 +
can be finitely axiomatized; for $  n = 3 $
 +
the lattice of subvarieties and the covering varieties have been determined [[#References|[a20]]]. Finitely-generated varieties are finitely axiomatizable (this does not extend to quasi-varieties).
  
 
==Generators and relations.==
 
==Generators and relations.==
See [[#References|[a28]]]. Given a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680267.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680268.png" /> of complements in a modular lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680269.png" /> and a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680270.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680271.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680272.png" />, one has that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680273.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680274.png" /> are central in the sublattice they generate together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680275.png" />. This applies to a direct decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680276.png" /> of a [[Representation of a partially ordered set|representation of a partially ordered set]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680277.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680278.png" />. Hence, for a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680279.png" /> of generators with partial order relation, the subdirectly indecomposable factors of the free lattice in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680280.png" /> can be obtained via Jónsson's lemma from the subdirectly indecomposable factors of indecomposable finite-dimensional representations. In particular, this carries through for representation-finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680281.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680282.png" /> not containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680283.png" /> nor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680284.png" />, these are exactly the subdirectly indecomposable modular lattices generated by such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680285.png" />, namely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680286.png" />- or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680287.png" />-element. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680288.png" /> one obtains all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680289.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680290.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680291.png" /> the prime subfield, lattices with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680292.png" />, and a series of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680293.png" />-distributives (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680294.png" /> labelings by generators) [[#References|[a13]]]. The latter are exactly the subdirectly indecomposable modular lattices generated by two pairs of complements. Also, the structure of the free lattices in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680295.png" /> over these and other tame <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680296.png" /> of finite growth is understood [[#References|[a4]]]. Moreover, the word problem for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680297.png" />-generated finitely-presented lattices in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680298.png" /> is solvable. The lattice-theoretic approach determines the subdirectly indecomposable factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680299.png" />, first, using neutral elements and the splitting method.
+
See [[#References|[a28]]]. Given a pair $  u _ {1} $,  
 +
$  u _ {2} $
 +
of complements in a modular lattice $  L $
 +
and a subset $  X $
 +
such that $  x = u _ {1} x + u _ {2} x $
 +
for all $  x \in X $,  
 +
one has that $  u $,  
 +
$  v $
 +
are central in the sublattice they generate together with $  X $.  
 +
This applies to a direct decomposition $  V = U _ {1} \oplus U _ {2} $
 +
of a [[Representation of a partially ordered set|representation of a partially ordered set]], $  f : E \rightarrow {L ( _ {k} V ) } $,  
 +
with $  X = f ( E ) $.  
 +
Hence, for a set $  E $
 +
of generators with partial order relation, the subdirectly indecomposable factors of the free lattice in $  H {\mathcal L} ( k ) $
 +
can be obtained via Jónsson's lemma from the subdirectly indecomposable factors of indecomposable finite-dimensional representations. In particular, this carries through for representation-finite $  E $.  
 +
For $  E $
 +
not containing $  1 + 1 + 1 + 1 $
 +
nor $  1 + 2 + 2 $,  
 +
these are exactly the subdirectly indecomposable modular lattices generated by such $  E $,  
 +
namely $  2 $-  
 +
or $  5 $-
 +
element. For $  | E | = 4 $
 +
one obtains all $  L ( _ {P} P  ^ {n} ) $,  
 +
$  n \geq  3 $,  
 +
$  P $
 +
the prime subfield, lattices with $  | L | \leq  6 $,  
 +
and a series of $  2 $-
 +
distributives (with $  6 $
 +
labelings by generators) [[#References|[a13]]]. The latter are exactly the subdirectly indecomposable modular lattices generated by two pairs of complements. Also, the structure of the free lattices in $  {\mathcal L} ( k ) $
 +
over these and other tame $  E $
 +
of finite growth is understood [[#References|[a4]]]. Moreover, the word problem for $  4 $-
 +
generated finitely-presented lattices in $  {\mathcal L} ( k ) $
 +
is solvable. The lattice-theoretic approach determines the subdirectly indecomposable factors $  S $,  
 +
first, using neutral elements and the splitting method.
  
 
A large number of finitely-presented modular lattices with additional unary operations have been determined in [[#References|[a14]]], [[#References|[a28]]] as invariants for the orbits (cf. [[Orbit|Orbit]]) of subspaces under the group of isometric mappings (cf. [[Isometric mapping|Isometric mapping]]) of a vector space endowed with a [[Sesquilinear form|sesquilinear form]]. The above methods have been modified to this setting.
 
A large number of finitely-presented modular lattices with additional unary operations have been determined in [[#References|[a14]]], [[#References|[a28]]] as invariants for the orbits (cf. [[Orbit|Orbit]]) of subspaces under the group of isometric mappings (cf. [[Isometric mapping|Isometric mapping]]) of a vector space endowed with a [[Sesquilinear form|sesquilinear form]]. The above methods have been modified to this setting.
  
The Arguesian lattices generated by a frame can be explicitly determined as certain lattices of subgroups of Abelian groups. To some extent the analysis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680300.png" /> and other generating posets carries over to Arguesian lattices, but essentially new phenomena occur [[#References|[a15]]].
+
The Arguesian lattices generated by a frame can be explicitly determined as certain lattices of subgroups of Abelian groups. To some extent the analysis for $  | E | = 4 $
 +
and other generating posets carries over to Arguesian lattices, but essentially new phenomena occur [[#References|[a15]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> U. Brehm, M. Greferath, S.E. Schmidt, "Projective geometry on modular lattices" F. Buekenhout (ed.) , ''Handbook of Incidence Geometry'' , Elsevier (1995) pp. 1115–1142 {{MR|1360736}} {{ZBL|0823.51006}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.M. Butler, "Subgroup lattices and symmetric functions" , ''Memoirs'' , '''539''' , Amer. Math. Soc. (1994) {{MR|1223236}} {{ZBL|0813.05067}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Crawley, R.P. Dilworth, "Algebraic theory of lattices" , Prentice-Hall (1973) {{MR|}} {{ZBL|0494.06001}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.A. Cylke, "Perfect and linearly equivalent elements in modular lattices" V. Dlab (ed.) etAAsal. (ed.) , ''Representations of Algebras VI (Proc. Int. Conf. Ottawa 1992)'' , ''CMS Conf. Proc.'' , '''14''' , Amer. Math. Soc. (1993) pp. 125–148 {{MR|1265280}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Day, "Geometrical applications in modular lattices" R. Freese (ed.) O. Garcia (ed.) , ''Universal Algebra and Lattice Theory'' , ''Lecture Notes in Mathematics'' , '''1004''' , Springer (1983) pp. 111–141 {{MR|0716178}} {{ZBL|0516.06008}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Day, D. Pickering, "The coordinatization of Arguesian lattices" ''Trans. Amer. Math. Soc.'' , '''278''' (1983) pp. 507–522 {{MR|0701508}} {{ZBL|0516.06007}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A. Day, "Applications of coordinatization in modular lattice theory: the legacy of J. von Neumann" ''Order'' , '''1''' (1985) pp. 295–300 {{MR|0779395}} {{ZBL|0558.06007}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> A. Day, R. Freese, "The role of gluing in modular lattice theory" K. Bogart (ed.) R. Freese (ed.) J. Kung (ed.) , ''The Dilworth Theorems, Selected Papers of Robert P. Dilworth'' , Birkhäuser (1990) pp. 251–260 {{MR|1111499}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> H. (eds.) Draškovičová, etAAsal., "Ordered sets and lattices, I--II" ''Amer. Math. Soc. Transl. Ser. 2'' , '''142, 152''' (1989/1992)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> D. Finberg, M. Mainetti, G.-C. Rota, "The logic of computing with equivalence relations" A. Ursini (ed.) P. Agliano (ed.) , ''Logic and Algebra'' , ''Lecture Notes Pure Applied Math.'' , '''180''' , M. Dekker (1996)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> R. Freese, "Free modular lattices" ''Trans. Amer. Math. Soc.'' , '''261''' (1980) pp. 81–91 {{MR|0576864}} {{ZBL|0437.06006}} </TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> R. Freese, R. McKenzie, "Commutator theory for congruence modular varieties" , ''Lecture Notes'' , '''125''' , London Math. Soc. (1987) {{MR|0909290}} {{ZBL|0636.08001}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> "Representation theory. Selected papers" I.M. Gel'fand (ed.) , ''Lecture Notes'' , '''69''' , London Math. Soc. (1982)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> H. Gross, "Quadratic forms in infinite dimensional vector spaces" , ''Progress in Math.'' , '''1''' , Birkhäuser (1979) {{MR|0537283}} {{ZBL|0413.10013}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> C. Herrmann, "On elementary Arguesian lattices with four generators" ''Algebra Universalis'' , '''18''' (1984) pp. 225–259 {{MR|0743468}} {{ZBL|0539.06009}} </TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> C. Herrmann, D. Pickering, M. Roddy, "Geometric description of modular lattices" ''Algebra Universalis'' , '''31''' (1994) pp. 365–396 {{MR|1265349}} {{ZBL|0816.06008}} </TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> C. Herrmann, "Alan Day's work on modular and Arguesian lattices" ''Algebra Universalis'' , '''34''' (1995) pp. 35–60</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> G. Hutchinson, "Embedding and unsolvability theorems for modular lattices" ''Algebra Universalis'' , '''7''' (1977) pp. 47–84 {{MR|0441804}} {{ZBL|0376.06015}} </TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> G. Hutchinson, G. Czédli, "A test for identities satisfied in lattices of submodules" ''Algebra Universalis'' , '''8''' (1978) pp. 269–309 {{MR|0469840}} {{ZBL|0384.06009}} </TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> P. Jipsen, H. Rose, "Varieties of lattices" , ''Lecture Notes in Mathematics'' , '''1533''' , Springer (1992) {{MR|1223545}} {{ZBL|0779.06005}} </TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> B. Jónsson, "On the representation of lattices" ''Math. Scand.'' , '''1''' (1953) pp. 193–206 {{MR|0058567}} {{ZBL|0053.21304}} </TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> B. Jónsson, "Modular lattices and Desargues' theorem" ''Math. Scand.'' , '''2''' (1954) pp. 295–314 {{MR|0067859}} {{ZBL|0056.38403}} </TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top"> B. Jónsson, "Representations of complemented modular lattices" ''Trans. Amer. Math. Soc.'' , '''60''' (1960) pp. 64–94 {{MR|0120175}} {{ZBL|0101.02204}} </TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top"> B. Jónsson, G. Monk, "Representation of primary Arguesian lattices" ''Pacific J. Math.'' , '''30''' (1969) pp. 95–130 {{MR|0258685}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a25]</TD> <TD valign="top"> B. Jónsson, "Varieties of algebras and their congruence varieties" , ''Proc. Int. Congress Math., Vancouver'' (1974) pp. 315–320 {{MR|0427206}} {{ZBL|0353.08001}} </TD></TR><TR><TD valign="top">[a26]</TD> <TD valign="top"> B. Jónsson, "Congruence varieties" , ''G. Grätzer: Universal Algebra'' , Springer (1978) pp. 348–377 (Appendix 3) {{MR|0564122}} {{MR|0439713}} {{MR|0427206}} {{ZBL|0841.08004}} {{ZBL|0438.08003}} {{ZBL|0361.08009}} {{ZBL|0353.08001}} </TD></TR><TR><TD valign="top">[a27]</TD> <TD valign="top"> R. McKenzie, G. McNulty, W. Taylor, "Algebras, lattices, varieties" , '''I''' , Wadsworth (1987)</TD></TR><TR><TD valign="top">[a28]</TD> <TD valign="top"> "Orthogonal geometry in infinite dimensional vector spaces" H.A. Keller (ed.) U.-M. Kuenzi (ed.) H. Storrer (ed.) M. Wild (ed.) , ''Lecture Notes in Mathematics'' , Springer (to appear) {{MR|1632306}} {{ZBL|0905.11001}} </TD></TR><TR><TD valign="top">[a29]</TD> <TD valign="top"> C. Năstăsecu, F. van Ostayen, "Dimensions of ring theory" , Reidel (1987)</TD></TR><TR><TD valign="top">[a30]</TD> <TD valign="top"> P.P. Pálfy, C. Szabó, "Congruence varieties of groups and Abelian groups" K. Baker (ed.) R. Wille (ed.) , ''Lattice Theory and Its Applications'' , Heldermann (1995) {{MR|1366871}} {{ZBL|0832.06006}} </TD></TR><TR><TD valign="top">[a31]</TD> <TD valign="top"> M. Prest, "Model theory and modules" , ''Lecture Notes'' , '''130''' , London Math. Soc. (1988) {{MR|0933092}} {{ZBL|0634.03025}} </TD></TR><TR><TD valign="top">[a32]</TD> <TD valign="top"> G. Hutchinson, "Modular lattices and abelian categories" ''J. Algebra'' , '''19''' (1971) pp. 156–184 {{MR|0279154}} {{ZBL|0221.06003}} </TD></TR><TR><TD valign="top">[a33]</TD> <TD valign="top"> G. Hutchinson, "On the representation of lattices by modules" ''Trans. Amer. Math. Soc.'' , '''209''' (1975) pp. 47–84 {{MR|0376462}} {{ZBL|0328.06002}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> U. Brehm, M. Greferath, S.E. Schmidt, "Projective geometry on modular lattices" F. Buekenhout (ed.) , ''Handbook of Incidence Geometry'' , Elsevier (1995) pp. 1115–1142 {{MR|1360736}} {{ZBL|0823.51006}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.M. Butler, "Subgroup lattices and symmetric functions" , ''Memoirs'' , '''539''' , Amer. Math. Soc. (1994) {{MR|1223236}} {{ZBL|0813.05067}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Crawley, R.P. Dilworth, "Algebraic theory of lattices" , Prentice-Hall (1973) {{MR|}} {{ZBL|0494.06001}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.A. Cylke, "Perfect and linearly equivalent elements in modular lattices" V. Dlab (ed.) etAAsal. (ed.) , ''Representations of Algebras VI (Proc. Int. Conf. Ottawa 1992)'' , ''CMS Conf. Proc.'' , '''14''' , Amer. Math. Soc. (1993) pp. 125–148 {{MR|1265280}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Day, "Geometrical applications in modular lattices" R. Freese (ed.) O. Garcia (ed.) , ''Universal Algebra and Lattice Theory'' , ''Lecture Notes in Mathematics'' , '''1004''' , Springer (1983) pp. 111–141 {{MR|0716178}} {{ZBL|0516.06008}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Day, D. Pickering, "The coordinatization of Arguesian lattices" ''Trans. Amer. Math. Soc.'' , '''278''' (1983) pp. 507–522 {{MR|0701508}} {{ZBL|0516.06007}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A. Day, "Applications of coordinatization in modular lattice theory: the legacy of J. von Neumann" ''Order'' , '''1''' (1985) pp. 295–300 {{MR|0779395}} {{ZBL|0558.06007}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> A. Day, R. Freese, "The role of gluing in modular lattice theory" K. Bogart (ed.) R. Freese (ed.) J. Kung (ed.) , ''The Dilworth Theorems, Selected Papers of Robert P. Dilworth'' , Birkhäuser (1990) pp. 251–260 {{MR|1111499}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> H. (eds.) Draškovičová, etAAsal., "Ordered sets and lattices, I--II" ''Amer. Math. Soc. Transl. Ser. 2'' , '''142, 152''' (1989/1992)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> D. Finberg, M. Mainetti, G.-C. Rota, "The logic of computing with equivalence relations" A. Ursini (ed.) P. Agliano (ed.) , ''Logic and Algebra'' , ''Lecture Notes Pure Applied Math.'' , '''180''' , M. Dekker (1996)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> R. Freese, "Free modular lattices" ''Trans. Amer. Math. Soc.'' , '''261''' (1980) pp. 81–91 {{MR|0576864}} {{ZBL|0437.06006}} </TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> R. Freese, R. McKenzie, "Commutator theory for congruence modular varieties" , ''Lecture Notes'' , '''125''' , London Math. Soc. (1987) {{MR|0909290}} {{ZBL|0636.08001}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> "Representation theory. Selected papers" I.M. Gel'fand (ed.) , ''Lecture Notes'' , '''69''' , London Math. Soc. (1982)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> H. Gross, "Quadratic forms in infinite dimensional vector spaces" , ''Progress in Math.'' , '''1''' , Birkhäuser (1979) {{MR|0537283}} {{ZBL|0413.10013}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> C. Herrmann, "On elementary Arguesian lattices with four generators" ''Algebra Universalis'' , '''18''' (1984) pp. 225–259 {{MR|0743468}} {{ZBL|0539.06009}} </TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> C. Herrmann, D. Pickering, M. Roddy, "Geometric description of modular lattices" ''Algebra Universalis'' , '''31''' (1994) pp. 365–396 {{MR|1265349}} {{ZBL|0816.06008}} </TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> C. Herrmann, "Alan Day's work on modular and Arguesian lattices" ''Algebra Universalis'' , '''34''' (1995) pp. 35–60</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> G. Hutchinson, "Embedding and unsolvability theorems for modular lattices" ''Algebra Universalis'' , '''7''' (1977) pp. 47–84 {{MR|0441804}} {{ZBL|0376.06015}} </TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> G. Hutchinson, G. Czédli, "A test for identities satisfied in lattices of submodules" ''Algebra Universalis'' , '''8''' (1978) pp. 269–309 {{MR|0469840}} {{ZBL|0384.06009}} </TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> P. Jipsen, H. Rose, "Varieties of lattices" , ''Lecture Notes in Mathematics'' , '''1533''' , Springer (1992) {{MR|1223545}} {{ZBL|0779.06005}} </TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> B. Jónsson, "On the representation of lattices" ''Math. Scand.'' , '''1''' (1953) pp. 193–206 {{MR|0058567}} {{ZBL|0053.21304}} </TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> B. Jónsson, "Modular lattices and Desargues' theorem" ''Math. Scand.'' , '''2''' (1954) pp. 295–314 {{MR|0067859}} {{ZBL|0056.38403}} </TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top"> B. Jónsson, "Representations of complemented modular lattices" ''Trans. Amer. Math. Soc.'' , '''60''' (1960) pp. 64–94 {{MR|0120175}} {{ZBL|0101.02204}} </TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top"> B. Jónsson, G. Monk, "Representation of primary Arguesian lattices" ''Pacific J. Math.'' , '''30''' (1969) pp. 95–130 {{MR|0258685}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a25]</TD> <TD valign="top"> B. Jónsson, "Varieties of algebras and their congruence varieties" , ''Proc. Int. Congress Math., Vancouver'' (1974) pp. 315–320 {{MR|0427206}} {{ZBL|0353.08001}} </TD></TR><TR><TD valign="top">[a26]</TD> <TD valign="top"> B. Jónsson, "Congruence varieties" , ''G. Grätzer: Universal Algebra'' , Springer (1978) pp. 348–377 (Appendix 3) {{MR|0564122}} {{MR|0439713}} {{MR|0427206}} {{ZBL|0841.08004}} {{ZBL|0438.08003}} {{ZBL|0361.08009}} {{ZBL|0353.08001}} </TD></TR><TR><TD valign="top">[a27]</TD> <TD valign="top"> R. McKenzie, G. McNulty, W. Taylor, "Algebras, lattices, varieties" , '''I''' , Wadsworth (1987)</TD></TR><TR><TD valign="top">[a28]</TD> <TD valign="top"> "Orthogonal geometry in infinite dimensional vector spaces" H.A. Keller (ed.) U.-M. Kuenzi (ed.) H. Storrer (ed.) M. Wild (ed.) , ''Lecture Notes in Mathematics'' , Springer (to appear) {{MR|1632306}} {{ZBL|0905.11001}} </TD></TR><TR><TD valign="top">[a29]</TD> <TD valign="top"> C. Năstăsecu, F. van Ostayen, "Dimensions of ring theory" , Reidel (1987)</TD></TR><TR><TD valign="top">[a30]</TD> <TD valign="top"> P.P. Pálfy, C. Szabó, "Congruence varieties of groups and Abelian groups" K. Baker (ed.) R. Wille (ed.) , ''Lattice Theory and Its Applications'' , Heldermann (1995) {{MR|1366871}} {{ZBL|0832.06006}} </TD></TR><TR><TD valign="top">[a31]</TD> <TD valign="top"> M. Prest, "Model theory and modules" , ''Lecture Notes'' , '''130''' , London Math. Soc. (1988) {{MR|0933092}} {{ZBL|0634.03025}} </TD></TR><TR><TD valign="top">[a32]</TD> <TD valign="top"> G. Hutchinson, "Modular lattices and abelian categories" ''J. Algebra'' , '''19''' (1971) pp. 156–184 {{MR|0279154}} {{ZBL|0221.06003}} </TD></TR><TR><TD valign="top">[a33]</TD> <TD valign="top"> G. Hutchinson, "On the representation of lattices by modules" ''Trans. Amer. Math. Soc.'' , '''209''' (1975) pp. 47–84 {{MR|0376462}} {{ZBL|0328.06002}} </TD></TR></table>

Revision as of 18:48, 5 April 2020


Desarguesian lattice

A lattice in which the Arguesian law is valid, i.e. for all $ a _ {i} $, $ b _ {i} $,

$$ ( a _ {0} + b _ {0} ) ( a _ {1} + b _ {1} ) ( a _ {2} + b _ {2} ) \leq a _ {0} ( a _ {1} + c ) + b _ {0} ( b _ {1} + c ) , $$

$ c = c _ {0} ( c _ {1} + c _ {2} ) $, $ c _ {i} = ( a _ {j} + a _ {k} ) ( b _ {j} + b _ {k} ) $ for any permutation $ i,j,k $[a21]. Arguesian lattices form a variety (cf. also Algebraic systems, variety of), since within lattices $ p \leq q $ is equivalent to $ pq = p $. A lattice is Arguesian if and only if it is a modular lattice and $ ( a _ {0} + b _ {0} ) ( a _ {1} + b _ {1} ) \leq a _ {2} + b _ {2} $( central perspectivity) implies $ c _ {2} \leq c _ {0} + c _ {1} $( axial perspectivity). In an Arguesian lattice and for $ a _ {i} $, $ b _ {i} $ such that $ a _ {2} = ( a _ {0} + a _ {2} ) ( a _ {1} + a _ {2} ) $ and $ b _ {2} = ( b _ {0} + b _ {2} ) ( b _ {1} + b _ {2} ) $, the converse implication is valid too [a24]. A lattice is Arguesian if and only if its partial order dual is Arguesian.

Examples of Arguesian lattices.

1) The lattice $ L ( P ) $ of subspaces of a projective space $ P $ is Arguesian if and only if the Desargues assumption is satisfied in $ P $.

2) Every lattice $ L ( _ {R} M ) $ of submodules of an $ R $- module $ M $( cf. also Module) and any lattice of subobjects of an object in an Abelian category.

3) Every lattice of normal subgroups (respectively, congruence relations; cf. Normal subgroup; Congruence (in algebra)) of a group and any lattice of permuting equivalence relations [a21] (also called a linear lattice).

4) Considering all lattices of congruence relations of algebraic systems (cf. Algebraic system) in a variety, the Arguesian law is equivalent to the modular law.

5) Every $ 2 $- distributive modular lattice (cf. also Distributive lattice): $ w ( x + y + z ) = w ( x + y ) + w ( x + z ) + w ( y + z ) $, i.e. without a projective plane in the variety.

The Arguesian law can be characterized in terms of forbidden subconfigurations, but not in terms of sublattices [a17]. Weaker versions involve less variables and higher-dimensional versions have increasing strength and number of variables; all are valid in linear lattices [a10]. The basic structure theory relies on the modular law, cf. Modular lattice and [a3], [a27]. For its role in the congruence and commutator theory of algebraic systems, cf. [a12]. Large parts of dimension theory for rings and modules can be conveniently done within modular lattices [a29].

Projective spaces.

See [a16]. Every modular lattice with complements (cf. Lattice with complements) can be embedded into $ L ( P ) $ for a projective space on the set $ P $ of its maximal filters (cf. Filter), actually a sublattice of the ideal lattice of the filter lattice (with filters ordered by inverse inclusion), whence preserving all identities. This Frink embedding generalizes the Stone representation theorem for Boolean algebras (cf. Boolean algebra). The coordinatization theorem of projective geometry implies that any Arguesian relatively complemented lattice can be embedded into a direct product of lattices of subspaces of vector spaces (cf. Vector space) [a22].

A compact element $ p $ of a modular algebraic lattice $ L $ is called a point if it is a join-irreducible element, i.e. has a unique lower cover $ p _ {*} $. If each element of $ L $ is a join of points (e.g., if $ { \mathop{\rm dim} } L < \infty $), then $ L $ can be understood as the subspace lattice of an ordered linear space on the set $ P $ of points: the order is induced by $ L $. Points $ p $, $ q $, $ r $ are collinear if they are distinct and $ p + q = p + r = q + r $, and a subspace is a subset $ X $ such that $ q \leq p \in X $ implies $ q \in X $, and $ p,q \in X $ with $ p $, $ q $, $ r $ collinear implies $ r \in X $. This can also be viewed as a presentation of $ L $ as a semi-lattice. Instead of all collinearities one may use a base of lines: for each element $ l = p + q $ a maximal set of points with pairwise join $ l $. For an abstract ordered linear space one has to require that collinearity is a totally symmetric relation, that collinear points are incomparable, that $ p,q \leq s $ and $ p $, $ q $, $ r $ collinear implies $ r \leq s $, that for $ r ^ \prime \leq r $ and $ p $, $ q $, $ r $ collinear there are $ p ^ \prime \leq p $ and $ q ^ \prime \leq q $ such that $ p ^ \prime $, $ q ^ \prime $, $ r ^ \prime $ are collinear or $ r ^ \prime \leq p $ or $ r ^ \prime \leq q $, and, finally, a more elaborate version of the triangle axiom. Then the subspaces form a lattice $ L $ as above and each modular lattice can be naturally embedded into such, preserving identities.

Subdirect products and congruences.

See [a3], [a20]. Every lattice is a subdirect product of subdirectly irreducible homomorphic images (cf. Homomorphism). By Jónsson's lemma, the subdirect irreducibles in the variety generated by a class $ {\mathcal C} $ are homomorphic images of sublattices of ultraproducts from $ {\mathcal C} $. A pair of complementary central elements $ u $, $ v $ provides a direct decomposition $ x \mapsto ( xu,xv ) $, a neutral element $ u $ implies a subdirect decomposition $ x \mapsto ( xu,x + u ) $.

Any congruence $ \theta $ on a modular lattice $ L $ is determined by its set $ Q ( \theta ) $ of quotients, where a quotient is a pair $ {a / b } $ with $ a \geq b $, equivalently, an interval $ [ b,a ] $. A pair of quotients is projective if it belongs to the equivalence relation generated by $ {a / b } $, $ {c / d } $ such that $ a = b + c $ and $ d = bc $. A subquotient $ {c / d } $ of $ {a / b } $ is such that $ b \leq d \leq c \leq a $. If $ \theta $ is generated by a set $ \Gamma $ of quotients, then $ Q ( \theta ) $ is the transitive closure of the set of all quotients projective to some subquotient of a quotient in $ \Gamma $. The congruences form a Brouwer lattice, with the pseudo-complement $ \theta ^ {*} $ of $ \theta $ given by the quotients not having any subquotient projective to a subquotient of a quotient in $ \Gamma $. $ L $ is subdirectly decomposed into $ L/ \theta $ and $ L/ \theta ^ {*} $ and each subdirectly indecomposable factor of $ L $ is a homomorphic image of $ L/ \theta $ or $ L/ \theta ^ {*} $. If $ \pi : L \rightarrow S $ is onto, $ { \mathop{\rm dim} } ( S ) < \infty $, and if $ {\pi rhat } x = \inf \{ {a \in L } : {\pi a = x } \} $( which then preserves sups) and the dual $ {\widehat \pi } $ exist, i.e. for a bounded image, then for $ \theta = { \mathop{\rm Ker} } \pi $ one finds that $ \theta ^ {*} $ is the transitive closure of prime quotients $ {a / b } $ with $ a = b + {\pi rhat } x $, $ b = a {\widehat \pi } y $ for some prime quotient $ {x / y } $ in $ S $. For any onto mapping $ \psi : L \rightarrow M $ with $ \pi $ not factoring through $ \psi $, this splitting method yields the relations $ \psi {\pi rhat } y \leq \psi {\widehat \pi } x $ for prime quotients $ {x / y } $ in $ S $. If $ L $ is generated by a finite set $ E $, starting with $ \sigma _ {0} x = \inf \{ {e \in E } : {\pi e \leq x } \} $ and iterating, $ \sigma _ {k + 1 } x = \inf \sigma _ {k} r ( \sigma _ {k} p + \sigma _ {k} q ) $ with $ p $, $ q $, $ r $ ranging over all subtriples of lines of a given base, leads to $ \sigma _ {n + 1 } = \sigma _ {n} = {\pi rhat } $ for some $ n $[a28].

For $ { \mathop{\rm dim} } L < \infty $, each congruence is determined by its prime quotients, either those in a given composition sequence or those of the form $ {p / {p _ {*} } } $, $ p $ a point. It follows that the congruences form a finite Boolean algebra and are in one-to-one correspondence with unions of connected components of the point set under the binary relation: $ \exists r $ with $ p $, $ q $, $ r $ collinear. Moreover, the subdirectly indecomposable factors $ L _ {i} $ of $ L $ are simple, i.e. correspond to maximal congruences $ \theta _ {i} $, and the dimensions add up: $ { \mathop{\rm dim} } L = \sum { \mathop{\rm dim} } L _ {i} $. The connected components associated with the $ \theta _ {i} ^ {*} $ are disjoint and are isomorphic images of the spaces of the $ L _ {i} $ via $ { {\pi _ {i} } rhat } $. Thus, the space of $ L $ can be constructed as the disjoint union of the spaces of the $ L _ {i} $ with $ p _ {i} \leq q _ {j} $ if and only if $ \pi _ {j} { {\pi _ {i} } rhat } p _ {i} \leq q _ {j} $ where $ \pi _ {j} { {\pi _ {i} } rhat } $ depends only on the subdirect product of $ L _ {i} $ and $ L _ {j} $ and can be computed, in the scaffolding construction, as the pointwise largest sup-homomorphism $ \alpha _ {ij } $ of $ L _ {i} $ into $ L _ {j} $ such that $ \alpha _ {ij } \pi _ {i} e \leq \pi _ {j} e $ for a given set of generators $ e $.

Glueing.

See [a8]. A tolerance relation on a lattice $ L $ is a binary relation that is reflexive, symmetric, and compatible, i.e. a subalgebra of $ L \times L $. A block is a maximal subset with every pair of elements in relation, whence a convex sublattice. The set $ S $ of blocks has a lattice structure. A convenient way to think of this is as a pair $ \sigma, \gamma $ of embeddings of a (not necessarily modular) skeleton lattice $ S $ into the filter, respectively ideal, lattice of $ L $ preserving finite sups, respectively infs, such that $ L ( x ) = \sigma ( x ) \cap \gamma ( x ) $ is non-empty for each $ x $, namely one of the blocks. A relevant tolerance for modular lattices is given by the relation that $ [ ab,a + b ] $ be complemented. Its blocks are the maximal relatively complemented convex sublattices of $ L $, and $ S $ is then the prime skeleton. One has a glueing if the smallest congruence extending the tolerance is total; this occurs for modular $ L $ of $ { \mathop{\rm dim} } L < \infty $ and the prime skeleton tolerance. The neutrality of $ u \in L $ can be shown with suitable $ S $ via an order-preserving mapping $ \alpha : S \rightarrow L $ turning $ L $ into a glueing with blocks $ [ u \alpha x, u + \alpha x ] $, $ x \in S $; this happens if: $ x \mapsto u \alpha x $ is sup-preserving, $ x \mapsto u + \alpha x $ is inf-preserving, and for each $ e $ in some generating set there is an $ x \in S $ with $ e = u \alpha x + ue $.

Every lattice with a tolerance gives rise to a system $ \phi _ {xy } , \psi _ {yx } $ of adjunctions between the blocks $ L ( x ) $, $ L ( y ) $, $ x \leq y $ in $ S $, satisfying certain axioms. Namely, $ \phi _ {xy } a \leq b $ if and only if $ a \leq b $ if and only if $ a \leq \psi _ {yx } b $. Conversely, each such system defines a pre-order on the disjoint union of the $ L ( x ) $ and, factoring by the associated equivalence relation, a lattice with tolerance having blocks $ L ( x ) $. Glueing always produces a modular lattice from modular blocks, but only in special cases the impact of the Arguesian law and various kinds of representability are understood (a necessary condition is that any pair of adjunctions matching coordinate rings of two frames induces an anti-isomorphism of partially ordered sets [a17]). For the combinatorial analysis of subgroup lattices of finite Abelian groups, cf. [a2].

Coordinates.

See [a5], [a7]. J. von Neumann introduced the lattice-theoretic analogue of projective coordinate systems: an $ n $- frame consists of independent elements $ a _ {i} $, $ a _ {ij } = a _ {ji } $, $ i,j \leq n $, $ i \neq j $, such that $ a _ {i} a _ {ij } = 0 $, $ \sum a _ {i} = 1 $, $ a _ {i} + a _ {ij } = a _ {i} + a _ {j} $, and $ a _ {ik } = ( a _ {i} + a _ {j} ) ( a _ {ij } + a _ {jk } ) $. There are equivalent variants. Any $ b _ {1} \leq a _ {1} $ provides frames $ b _ {i} = a _ {i} a _ {1i } $, $ b _ {ij } = a _ {ij } ( b _ {i} + b _ {j} ) $ and $ c _ {i} = a _ {i} + v $, $ c _ {ij } = a _ {ij } + v $, where $ v = \sum b _ {i} $, of sublattices which can be used to derive frames satisfying relations. The elements $ r _ {ij } $ such that $ r _ {j} a _ {j} = 0 $ and $ r _ {ij } + a _ {j} = a _ {i} + a _ {j} $ form the coordinate domain $ R _ {ij } $. For a free $ R $- module with basis $ e _ {i} $ one has the canonical frame $ Re _ {i} $, $ R ( e _ {i} - e _ {j} ) $ and $ r _ {ij } = R ( e _ {i} - re _ {j} ) $. If $ n \geq 4 $ or, in the presence of the Arguesian law, $ n = 3 $[a6], then the $ R _ {ij } $ are turned into rings (cf. Ring) isomorphic via $ r _ {ij } \mapsto r _ {ik } = ( a _ {i} + a _ {k} ) ( r _ {ij } + a _ {jk } ) $, respectively $ r _ {ij } \mapsto r _ {hj } = ( a _ {h} + a _ {j} ) ( r _ {ij } + a _ {ih } ) $, with unit $ a _ {ij } $ and

$$ r _ {ij } \oplus s _ {ij } = ( a _ {i} + a _ {j} ) [ ( r _ {ij } + a _ {k} ) ( a _ {ik } + a _ {j} ) + s _ {kj } ] , $$

$$ r _ {ij } \otimes s _ {ij } = ( a _ {i} + a _ {j} ) ( r _ {ik } + s _ {kj } ) . $$

Every modular lattice generated by a frame can be generated by $ 4 $ elements. Every finitely-generated semi-group $ S $ can be embedded into the multiplicative semi-group of the coordinate ring of a suitable frame in some $ 5 $- generated sublattice of $ L ( _ {k} V ) $ over a given field $ k $( finite dimensional if $ S $ is finite).

A complemented Arguesian lattice possessing a large partial $ 3 $- frame (i.e., a $ 3 $- frame of a section $ [ 0,u ] $ with $ u $ having a complement $ d = \sum _ {i = 1 } ^ {m} x _ {i} $, $ x _ {i} $ perspective to $ y _ {i} \leq a _ {1} $) or being simple of dimension $ \geq 3 $ is isomorphic to the lattice of principal right ideals of some regular ring [a23]. Under suitable richness assumptions, lattices $ L ( _ {R} M ) $ have been characterized for various classes of rings via the Arguesian law and geometric conditions on the lattice, e.g. for completely primary uniserial rings [a24] and left Ore domains. There are results on lattice isomorphisms induced by semi-linear mappings, respectively Morita equivalences (cf. also Morita equivalence), and on lattice homomorphisms induced by tensoring [a1]. Abelian lattices, having certain features of Abelian categories, can be embedded into subgroup lattices of Abelian groups. This includes algebraic modular lattices having an infinite frame [a32].

Equational theory.

See [a5], [a7], [a8], [a20]. The class of all linear lattices, respectively the class $ {\mathcal L} ( R ) $ of all lattices embeddable into some $ L ( _ {R} M ) $, forms a quasi-variety, since it arises from a projective class in the sense of Mal'tsev. Natural axiom systems and proof theories for quasi-identities have been given, cf. [a10], [a33]. The latter present identities via graphs. On the other hand, there is no finitely-axiomatized quasi-variety containing $ L ( k ^ {( \omega ) } ) $, $ k $ some field, and satisfying all higher-dimensional Arguesian laws. Also, every quasi-variety of modular lattices containing some $ L ( k ^ {( \omega ) } ) $ also contains a $ 5 $- generated finitely-presented lattice with unsolvable decision problem for words [a18].

Identities are preserved when passing to the ideal lattice; thus, one may assume algebraicity. Frames are projective systems of generators and relations within modular lattices: for each $ n $ there are terms $ a _ {i} $, $ a _ {ij } $ in the variables $ x _ {i} $, $ z _ {ij } $ such that the $ a _ {i} $, $ a _ {ij } $ form a frame in a sublattice for any choice of the $ x _ {i} $, $ z _ {ij } $ in a modular lattice and $ a _ {i} = x _ {i} $, $ a _ {ij } = z _ {ij } $ if these happen to form a frame already. This allows one to translate divisibility of integer multiples of $ 1 $ in a ring (more generally, solvability of systems of linear equations with integer coefficients) into lattice identities. The converse has been done in [a19] for lattices of submodules: solving the decision problem for words in free lattices in $ {\mathcal L} ( R ) $, whenever $ R $ has decidable divisibility of integers (e.g. $ R = \mathbf Z $), and providing a complete list of all varieties $ H {\mathcal L} ( R ) $, each generated by finite-dimensional members (related ideas occur in the model theory of modules [a31]). In contrast, no finitely-axiomatized variety of modular lattices containing $ L ( Q ^ {( \omega ) } ) $ is generated by its finite-dimensional members. For free lattices with $ n \geq 4 $ generators in the quasi-varieties of all Arguesian linear, respectively normal, subgroup lattices the decision problem remains open (in contrast to the negative answer for modular lattices [a11]). The corresponding variety containments, with $ H {\mathcal L} ( Z ) $ included, are all proper [a25], [a26], [a30]. There are rings $ R $ with $ {\mathcal L} ( R ) $ not a variety, but the status for $ {\mathcal L} ( k ) $, $ k $ a field, $ {\mathcal L} ( Z ) $, normal subgroup and linear lattices is unknown. Yet, for finite-dimensional $ L \in H {\mathcal L} ( k ) $ a retraction into $ {\mathcal L} ( k ) $ is possible. The variety generated by modular lattices of $ { \mathop{\rm dim} } ( L ) \leq n $ can be finitely axiomatized; for $ n = 3 $ the lattice of subvarieties and the covering varieties have been determined [a20]. Finitely-generated varieties are finitely axiomatizable (this does not extend to quasi-varieties).

Generators and relations.

See [a28]. Given a pair $ u _ {1} $, $ u _ {2} $ of complements in a modular lattice $ L $ and a subset $ X $ such that $ x = u _ {1} x + u _ {2} x $ for all $ x \in X $, one has that $ u $, $ v $ are central in the sublattice they generate together with $ X $. This applies to a direct decomposition $ V = U _ {1} \oplus U _ {2} $ of a representation of a partially ordered set, $ f : E \rightarrow {L ( _ {k} V ) } $, with $ X = f ( E ) $. Hence, for a set $ E $ of generators with partial order relation, the subdirectly indecomposable factors of the free lattice in $ H {\mathcal L} ( k ) $ can be obtained via Jónsson's lemma from the subdirectly indecomposable factors of indecomposable finite-dimensional representations. In particular, this carries through for representation-finite $ E $. For $ E $ not containing $ 1 + 1 + 1 + 1 $ nor $ 1 + 2 + 2 $, these are exactly the subdirectly indecomposable modular lattices generated by such $ E $, namely $ 2 $- or $ 5 $- element. For $ | E | = 4 $ one obtains all $ L ( _ {P} P ^ {n} ) $, $ n \geq 3 $, $ P $ the prime subfield, lattices with $ | L | \leq 6 $, and a series of $ 2 $- distributives (with $ 6 $ labelings by generators) [a13]. The latter are exactly the subdirectly indecomposable modular lattices generated by two pairs of complements. Also, the structure of the free lattices in $ {\mathcal L} ( k ) $ over these and other tame $ E $ of finite growth is understood [a4]. Moreover, the word problem for $ 4 $- generated finitely-presented lattices in $ {\mathcal L} ( k ) $ is solvable. The lattice-theoretic approach determines the subdirectly indecomposable factors $ S $, first, using neutral elements and the splitting method.

A large number of finitely-presented modular lattices with additional unary operations have been determined in [a14], [a28] as invariants for the orbits (cf. Orbit) of subspaces under the group of isometric mappings (cf. Isometric mapping) of a vector space endowed with a sesquilinear form. The above methods have been modified to this setting.

The Arguesian lattices generated by a frame can be explicitly determined as certain lattices of subgroups of Abelian groups. To some extent the analysis for $ | E | = 4 $ and other generating posets carries over to Arguesian lattices, but essentially new phenomena occur [a15].

References

[a1] U. Brehm, M. Greferath, S.E. Schmidt, "Projective geometry on modular lattices" F. Buekenhout (ed.) , Handbook of Incidence Geometry , Elsevier (1995) pp. 1115–1142 MR1360736 Zbl 0823.51006
[a2] L.M. Butler, "Subgroup lattices and symmetric functions" , Memoirs , 539 , Amer. Math. Soc. (1994) MR1223236 Zbl 0813.05067
[a3] P. Crawley, R.P. Dilworth, "Algebraic theory of lattices" , Prentice-Hall (1973) Zbl 0494.06001
[a4] A.A. Cylke, "Perfect and linearly equivalent elements in modular lattices" V. Dlab (ed.) etAAsal. (ed.) , Representations of Algebras VI (Proc. Int. Conf. Ottawa 1992) , CMS Conf. Proc. , 14 , Amer. Math. Soc. (1993) pp. 125–148 MR1265280
[a5] A. Day, "Geometrical applications in modular lattices" R. Freese (ed.) O. Garcia (ed.) , Universal Algebra and Lattice Theory , Lecture Notes in Mathematics , 1004 , Springer (1983) pp. 111–141 MR0716178 Zbl 0516.06008
[a6] A. Day, D. Pickering, "The coordinatization of Arguesian lattices" Trans. Amer. Math. Soc. , 278 (1983) pp. 507–522 MR0701508 Zbl 0516.06007
[a7] A. Day, "Applications of coordinatization in modular lattice theory: the legacy of J. von Neumann" Order , 1 (1985) pp. 295–300 MR0779395 Zbl 0558.06007
[a8] A. Day, R. Freese, "The role of gluing in modular lattice theory" K. Bogart (ed.) R. Freese (ed.) J. Kung (ed.) , The Dilworth Theorems, Selected Papers of Robert P. Dilworth , Birkhäuser (1990) pp. 251–260 MR1111499
[a9] H. (eds.) Draškovičová, etAAsal., "Ordered sets and lattices, I--II" Amer. Math. Soc. Transl. Ser. 2 , 142, 152 (1989/1992)
[a10] D. Finberg, M. Mainetti, G.-C. Rota, "The logic of computing with equivalence relations" A. Ursini (ed.) P. Agliano (ed.) , Logic and Algebra , Lecture Notes Pure Applied Math. , 180 , M. Dekker (1996)
[a11] R. Freese, "Free modular lattices" Trans. Amer. Math. Soc. , 261 (1980) pp. 81–91 MR0576864 Zbl 0437.06006
[a12] R. Freese, R. McKenzie, "Commutator theory for congruence modular varieties" , Lecture Notes , 125 , London Math. Soc. (1987) MR0909290 Zbl 0636.08001
[a13] "Representation theory. Selected papers" I.M. Gel'fand (ed.) , Lecture Notes , 69 , London Math. Soc. (1982)
[a14] H. Gross, "Quadratic forms in infinite dimensional vector spaces" , Progress in Math. , 1 , Birkhäuser (1979) MR0537283 Zbl 0413.10013
[a15] C. Herrmann, "On elementary Arguesian lattices with four generators" Algebra Universalis , 18 (1984) pp. 225–259 MR0743468 Zbl 0539.06009
[a16] C. Herrmann, D. Pickering, M. Roddy, "Geometric description of modular lattices" Algebra Universalis , 31 (1994) pp. 365–396 MR1265349 Zbl 0816.06008
[a17] C. Herrmann, "Alan Day's work on modular and Arguesian lattices" Algebra Universalis , 34 (1995) pp. 35–60
[a18] G. Hutchinson, "Embedding and unsolvability theorems for modular lattices" Algebra Universalis , 7 (1977) pp. 47–84 MR0441804 Zbl 0376.06015
[a19] G. Hutchinson, G. Czédli, "A test for identities satisfied in lattices of submodules" Algebra Universalis , 8 (1978) pp. 269–309 MR0469840 Zbl 0384.06009
[a20] P. Jipsen, H. Rose, "Varieties of lattices" , Lecture Notes in Mathematics , 1533 , Springer (1992) MR1223545 Zbl 0779.06005
[a21] B. Jónsson, "On the representation of lattices" Math. Scand. , 1 (1953) pp. 193–206 MR0058567 Zbl 0053.21304
[a22] B. Jónsson, "Modular lattices and Desargues' theorem" Math. Scand. , 2 (1954) pp. 295–314 MR0067859 Zbl 0056.38403
[a23] B. Jónsson, "Representations of complemented modular lattices" Trans. Amer. Math. Soc. , 60 (1960) pp. 64–94 MR0120175 Zbl 0101.02204
[a24] B. Jónsson, G. Monk, "Representation of primary Arguesian lattices" Pacific J. Math. , 30 (1969) pp. 95–130 MR0258685
[a25] B. Jónsson, "Varieties of algebras and their congruence varieties" , Proc. Int. Congress Math., Vancouver (1974) pp. 315–320 MR0427206 Zbl 0353.08001
[a26] B. Jónsson, "Congruence varieties" , G. Grätzer: Universal Algebra , Springer (1978) pp. 348–377 (Appendix 3) MR0564122 MR0439713 MR0427206 Zbl 0841.08004 Zbl 0438.08003 Zbl 0361.08009 Zbl 0353.08001
[a27] R. McKenzie, G. McNulty, W. Taylor, "Algebras, lattices, varieties" , I , Wadsworth (1987)
[a28] "Orthogonal geometry in infinite dimensional vector spaces" H.A. Keller (ed.) U.-M. Kuenzi (ed.) H. Storrer (ed.) M. Wild (ed.) , Lecture Notes in Mathematics , Springer (to appear) MR1632306 Zbl 0905.11001
[a29] C. Năstăsecu, F. van Ostayen, "Dimensions of ring theory" , Reidel (1987)
[a30] P.P. Pálfy, C. Szabó, "Congruence varieties of groups and Abelian groups" K. Baker (ed.) R. Wille (ed.) , Lattice Theory and Its Applications , Heldermann (1995) MR1366871 Zbl 0832.06006
[a31] M. Prest, "Model theory and modules" , Lecture Notes , 130 , London Math. Soc. (1988) MR0933092 Zbl 0634.03025
[a32] G. Hutchinson, "Modular lattices and abelian categories" J. Algebra , 19 (1971) pp. 156–184 MR0279154 Zbl 0221.06003
[a33] G. Hutchinson, "On the representation of lattices by modules" Trans. Amer. Math. Soc. , 209 (1975) pp. 47–84 MR0376462 Zbl 0328.06002
How to Cite This Entry:
Arguesian lattice. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arguesian_lattice&oldid=45218
This article was adapted from an original article by C. Herrmann (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article