Namespaces
Variants
Actions

Difference between revisions of "Approximate continuity"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
A generalization of the concept of continuity in which the ordinary limit is replaced by an [[Approximate limit|approximate limit]]. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128401.png" /> is called approximately continuous at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128402.png" /> if
+
{{MSC|26B05|28A20,49Q15}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128403.png" /></td> </tr></table>
+
[[Category:Classical measure theory]]
  
In the simplest case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128404.png" /> is a real-valued function of the points of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128405.png" />-dimensional Euclidean space (in general it is a vector-valued function). The following theorems apply. 1) A real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128406.png" /> is Lebesgue-measurable on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128407.png" /> if and only if it is approximately continuous almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128408.png" /> (the Stepanov–Denjoy theorem). 2) For any bounded Lebesgue-measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a0128409.png" /> one has, at each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284010.png" />,
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284011.png" /></td> </tr></table>
+
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284012.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284013.png" />-dimensional Lebesgue measure, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284014.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284015.png" />-dimensional non-degenerate segment containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284016.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012840/a01284017.png" /> is its diameter.
+
A concept of classical measure theory.
  
====References====
+
A generalization of the concept of continuity in which the ordinary limit is replaced by an [[Approximate limit|approximate limit]]. Consider a (Lebesgue) measurable set $E\subset \mathbb R^n$, a measurable function $f: E\to \mathbb R^k$ and a point $x_0\in E$ where the [[Density of a set|Lebesgue density]] of $E$ is $1$. $f$ is approximately continuous at $x_0$ if and only if the
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Saks,   "Theory of the integral" , Hafner  (1952) (Translated from French)</TD></TR></table>
+
[[Approximate limit|approximate limit]] of $f$ at $x_0$ exists and equals $f(x_0)$ (cp. with Section 1.7.2 of {{Cite|EG}}). It follows from [[Luzin-C-property|Lusin's theorem]] that a measurable function is approximately continuous at almost every point (see Theorem 3 of Section 1.7.2 of {{Cite|EG}}). The definition of approximate continuity can be extended to nonmeasurable functions (cp. with [[Approximate limit]] and see Section 2.9.12 of {{Cite|Fe}}). The almost everywhere approximate continuity becomes then a characterization of measurability (Stepanov–Denjoy theorem, see Theorem 2.9.13 of {{Cite|Fe}}).
  
 +
Points of approximate continuity are related to [[Lebesgue point|Lebesgue points]]. Recall that a Lebesgue point $x_0$ of a function $f\in L^1 (E)$ is a point of Lebesgue density $1$ for $E$ at which
 +
\[
 +
\lim_{r\downarrow 0} \frac{1}{\lambda (B_r (x_0))} \int_{E\cap B_r (x_0)} |f(x)-f(x_0)|\, dx = 0\, ,
 +
\]
 +
where $\lambda$ denotes the Lebesgue measure. In particular a Lebesgue point is always a point of approximate continuity
 +
(cp. with Section 1.7.2 of {{Cite|EG}}). Conversely, if $f$ is essentially bounded, the points of approximate continuity of $f$ are also Lebesgue points.
  
 
+
====References====
====Comments====
+
{|
For other references see [[Approximate limit|Approximate limit]].
+
|valign="top"|{{Ref|Br}}|| A.M. Bruckner,  "Differentiation of real functions" , Springer  (1978) {{MR|0507448}}  {{ZBL|0382.26002}}
 +
|-
 +
|valign="top"|{{Ref|EG}}|| L.C. Evans, R.F. Gariepy,  "Measure theory  and fine properties of functions" Studies in Advanced  Mathematics. CRC  Press, Boca Raton, FL,  1992. {{MR|1158660}}  {{ZBL|0804.2800}}
 +
|-
 +
|valign="top"|{{Ref|Fe}}||  H. Federer, "Geometric measure theory". Volume 153 of Die Grundlehren  der mathematischen Wissenschaften. Springer-Verlag New York Inc., New  York, 1969. {{MR|0257325}} {{ZBL|0874.49001}}
 +
|-
 +
|valign="top"|{{Ref|Mu}}||  M.E. Munroe,  "Introduction to measure and integration" , Addison-Wesley  (1953) {{MR|035237}} {{ZBL|0227.28001}}
 +
|-
 +
|valign="top"|{{Ref|Sa}}|| S. Saks,  "Theory of the integral" , Hafner  (1952) {{MR|0167578}} {{ZBL|63.0183.05}}
 +
|-
 +
|valign="top"|{{Ref|Th}}|| B.S. Thomson,  "Real functions" , Springer  (1985) {{MR|0818744}} {{ZBL|0581.26001}}
 +
|-
 +
|}

Latest revision as of 17:15, 18 August 2012

2020 Mathematics Subject Classification: Primary: 26B05 Secondary: 28A2049Q15 [MSN][ZBL]

A concept of classical measure theory.

A generalization of the concept of continuity in which the ordinary limit is replaced by an approximate limit. Consider a (Lebesgue) measurable set $E\subset \mathbb R^n$, a measurable function $f: E\to \mathbb R^k$ and a point $x_0\in E$ where the Lebesgue density of $E$ is $1$. $f$ is approximately continuous at $x_0$ if and only if the approximate limit of $f$ at $x_0$ exists and equals $f(x_0)$ (cp. with Section 1.7.2 of [EG]). It follows from Lusin's theorem that a measurable function is approximately continuous at almost every point (see Theorem 3 of Section 1.7.2 of [EG]). The definition of approximate continuity can be extended to nonmeasurable functions (cp. with Approximate limit and see Section 2.9.12 of [Fe]). The almost everywhere approximate continuity becomes then a characterization of measurability (Stepanov–Denjoy theorem, see Theorem 2.9.13 of [Fe]).

Points of approximate continuity are related to Lebesgue points. Recall that a Lebesgue point $x_0$ of a function $f\in L^1 (E)$ is a point of Lebesgue density $1$ for $E$ at which \[ \lim_{r\downarrow 0} \frac{1}{\lambda (B_r (x_0))} \int_{E\cap B_r (x_0)} |f(x)-f(x_0)|\, dx = 0\, , \] where $\lambda$ denotes the Lebesgue measure. In particular a Lebesgue point is always a point of approximate continuity (cp. with Section 1.7.2 of [EG]). Conversely, if $f$ is essentially bounded, the points of approximate continuity of $f$ are also Lebesgue points.

References

[Br] A.M. Bruckner, "Differentiation of real functions" , Springer (1978) MR0507448 Zbl 0382.26002
[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Fe] H. Federer, "Geometric measure theory". Volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, 1969. MR0257325 Zbl 0874.49001
[Mu] M.E. Munroe, "Introduction to measure and integration" , Addison-Wesley (1953) MR035237 Zbl 0227.28001
[Sa] S. Saks, "Theory of the integral" , Hafner (1952) MR0167578 Zbl 63.0183.05
[Th] B.S. Thomson, "Real functions" , Springer (1985) MR0818744 Zbl 0581.26001
How to Cite This Entry:
Approximate continuity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Approximate_continuity&oldid=12503
This article was adapted from an original article by G.P. Tolstov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article