Namespaces
Variants
Actions

Appell equations

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Ordinary differential equations which describe the motions of both holonomic and non-holonomic systems, established by P.E. Appell [1]. They are sometimes referred to as Gibbs–Appell equations, since they were first proposed by J.W. Gibbs [3] for holonomic systems. The Appell equations in independent Lagrange coordinates $ q _ {s} $( $ s =1 \dots n $) have the form of second-order equations

$$ \tag{1 } \frac{\partial S }{\partial \dot{q} dot _ {i} } = Q _ {i} ^ {*} ,\ \ i = 1 \dots k \leq n . $$

Here

$$ S = \frac{1}{2} \sum _ {\nu = 1 } ^ { N } m _ \nu w _ \nu ^ {2} $$

( $ m _ \nu $ and $ w _ \nu $ are the masses and the accelerations of the $ N $ points of the system) is the energy of acceleration of the system, which is so expressed that it contains the second derivatives of the coordinates $ q _ {i} $, $ i = 1 \dots k $, only, the variations of which are considered as independent; $ Q _ {i} ^ {*} $ are the generalized forces corresponding to the coordinates $ q _ {i} $, obtained as coefficients in front of the independent variations $ \delta q _ {i} $ in the expression for the work of the given active forces $ F _ \nu $ corresponding to virtual displacements $ \delta r _ \nu $:

$$ \sum _ {\nu = 1 } ^ { N } F _ \nu \delta r _ \nu = \sum _ {i = 1 } ^ { k } Q _ {1} ^ {*} \delta q _ {i} . $$

In evaluating $ S $ and $ Q _ {i} ^ {*} $ the dependent variables $ \dot{q} _ {j} $( $ \delta q _ {j} $) $ (j = k+1 \dots n) $ are expressed in terms of the independent velocities (variations) by solving the $ n - k $ non-holonomic constraint equations (cf. Non-holonomic systems), expressed in the generalized coordinates $ q _ {s} $( and by solving the equations for $ \delta q _ {s} $ obtained from them). Differentiation with respect to the time $ t $ of the expressions found for $ \dot{q} _ {j} $ yields expressions for $ \dot{q} dot _ {j} $ in terms of $ \dot{q} dot _ {i} $.

Equations (1), together with the $ n - k $ equations of the non-integrable constraints, form a system (of order $ n + k $) of $ n $ differential equations involving the $ n $ unknowns $ q _ {s} $.

For a holonomic system $ k = n $, all velocities $ q _ {s} $ and variations $ \delta q _ {s} $ are independent, $ Q _ {i} ^ {*} = Q _ {i} $, and equations (1) are a different notation for the Lagrange equations (in mechanics)) of the second kind.

Appell's equations in quasi-coordinates $ \pi _ {r} $, where

$$ \tag{2 } \dot \pi _ {r} = \sum _ {i = 1 } ^ { n } a _ {r _ {i} } \dot{q} _ {i} ,\ \ r = 1 \dots k, $$

have the form

$$ \tag{3 } \frac{\partial S }{\partial \dot \pi dot _ {r} } = \Pi _ {r} ,\ \ r = 1 \dots k \leq n . $$

Here $ S $ is the energy of acceleration, expressed in terms of the second "derivatives" $ \dot \pi dot _ {r} $( with respect to the time) of the quasi-coordinates, and $ \Pi _ {r} $ are the generalized forces corresponding to the quasi-coordinates. Equations (3), together with the $ n - k $ equations of the non-integrable constraints and the $ k $ equations (2), form a system of $ n + k $ differential equations of the first order with the same number of unknowns $ q _ {s} $, $ s = 1 \dots n $, and $ \dot \pi _ {r} $, $ r = 1 \dots k $.

Appell's equations are the most general equations of motion of mechanical systems.

References

[1] P.E. Appell, "Sur une forme générale des équations de la dynamique" C.R. Acad. Sci. Paris Sér. I Math. , 129 (1899) Zbl 30.0641.02
[2] P.E. Appell, "Sur une forme générale des équations de la dynamique et sur le principe de Gauss" J. Reine Angew. Math. , 122 (1900) pp. 205–208 Zbl 31.0692.02
[3] J.W. Gibbs, "On the fundamental formula of dynamics" Amer. J. Math. , 2 (1879) pp. 49–64
[a1] E.T. Whittaker, "Analytical dynamics" , Cambridge Univ. Press (1927) pp. 258
How to Cite This Entry:
Appell equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Appell_equations&oldid=55631
This article was adapted from an original article by V.V. Rumyantsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article