Namespaces
Variants
Actions

Analytic capacity

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 30C85 Secondary: 31A15 [MSN][ZBL]


Definitions

Analytic capacity was introduced by L.V. Ahlfors in [A] in 1947 for the characterization of removable singularities of bounded analytic functions. Let $K$ be a compact set in the complex plane $\mathbb C$. The analytic capacity of $K$ is defined by $$\gamma(K)=\sup\{\lim_{|z|\to\infty}|zf(z)|: f\in A(K)\}$$ where $A(K)$ is the set of functions which are analytic outside $K$, vanish at infinity and for which $|f(z)|\leq1$ for $z\in\mathbb C\setminus K$.

A related concept, which is more useful in rational approximation, is continuous analytic capacity $\alpha(K)$. It is defined as $\gamma(K)$ but the test functions $f$ are additionally required to be defined and continuous in the whole complex plane.


Removable sets

Ahlfors proved in [A] that a compact set $K$ is removable for bounded analytic functions if and only if $\gamma(K)=0$. The removability means that whenever $U$ is an open set in $\mathbb C$ containing $K$ and $f$ is bounded and analytic in $U\setminus K$, then $f$ has an analytic extension to $U$. It is fairly easy to show with the help of the Cauchy integral formula and Liouville's theorem that $K$ is removable for bounded analytic functions if and only if every bounded analytic function in $\mathbb C\setminus K$ is constant. Similarly, $\alpha(K)=0$ if and only if every bounded continuous function in $\mathbb C$ which is analytic in $\mathbb C\setminus K$ is constant.

An outstanding problem is to find a characterization in geometric terms for the null-sets of the analytic capacity. This is called Painlevè's problem since P. Painlevè studied it already in 1888 and proved a sufficient condition, property (i) below.


Properties

Some basic properties of the analytic capacity are the following three:

(i) If $K$ has length (that is, one-dimensional Hausdorff measure) zero, then $\gamma(K)=0$.

(ii) If $K$ has Hausdorff dimension greater than 1 (in particular, if $K$ has interior points), then $\gamma(K)>0$.

(iii) If $K$ is a subset of a rectifiable curve, then $\gamma(K)=0$ if and only if $K$ has length zero.

The first two are fairly easy, but the third one is deep, see, e.g., [P].


Rational approximation and semiadditivity

Solutions of many fundamental problems in rational approximation can be formulated in terms of analytic capacity. Thus any continuous function on a compact set $K$ in the plane can be uniformly approximated by rational functions with poles off $K$ if and only if $$\alpha(D\setminus K)=\alpha(D\setminus \text{interior}(K))\ \text{for any disc}\ D.$$ The work of the Moscow school (A.G. Vitushkin, M.S. Melnikov, and others) in the 1960's was particularly important in this development. Vitushkin also formulated the semiadditivity problem:

does there exist a constant $C$ such that for all compact subsets $K_1$ and $K_2$ of the plane, $$\gamma(K_1\cup K_2)\leq C(\gamma(K_1)+\gamma(K_2))?$$

Tolsa's solutions

In [T] X. Tolsa solved both Painlevè's problem and the semiadditivity problem. The solutions depend on the so-called Menger curvature $c(z_1,z_2,z_3)$ for triples of points in $\mathbb C$ and a formula of M.S. Melnikov relating it to the Cauchy kernel $1/z$. By definition the Menger curvature is the reciprocal of the radius of the circle passing through the points $z_1,z_2,z_3$; it is equal to zero if and only if the three points lie on one line. Tolsa proved the following two results:

Theorem 1 For a compact set $K\subset \mathbb C$, $\gamma(K)>0$ if and only there is a positive non-trivial Borel measure $\mu$ on $\mathbb C$ such that $\mu(D)\leq {\rm diam}\, (D)$ for all discs $D$ in $\mathbb C$ and $\int\int\int c(z_1,z_2,z_3)^2d\mu z_1d\mu z_2d\mu z_3<\infty$.

Theorem 2 The analytic capacity is semiadditive: there exists a constant $C$ such that for all compact subsets $K_1,K_2,\dots$, of the plane, $$\gamma(\cup_jK_j)\leq C\sum_j\gamma(K_j).$$

Good general references are [G], [P], [V] and [Z].

References

[A] L.V. Ahlfors, "Bounded analytic functions" Duke Math. J. , 14 (1947) pp. 1–11. MR0021108Zbl 0030.03001
[G] J.B. Garnett, "Analytic Capacity and Measure" Spinger-Verlag Lecture Notes 297, 1972. MR0454006 Zbl 0253.30014
[P] H. Pajot, "Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral" , Spinger-Verlag Lecture Notes 1799, 2002. MR1952175 Zbl 1043.28002
[T] X. Tolsa, "Painlevè's problem and the semiadditivity of analytic capacity" , Acta Mathematica 190 (2003), 105-149. MR1982794 Zbl 1060.30031
[V] A.G. Vitushkin, "Analytic capacity of sets in problems of approximation theory"" Russian Math. Surveys , 22 : 6 (1967) pp. 139–200 Uspekhi Mat. Nauk , 22 : 6 (1967) pp. 141–199. MR1857292Zbl 0164.37701
[Z] L. Zalcman, "Analytic capacity rational approximation" Spinger-Verlag Lecture Notes 50, 1968.
How to Cite This Entry:
Analytic capacity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_capacity&oldid=28306
This article was adapted from an original article by A.G. Vitushkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article