Namespaces
Variants
Actions

Alexander invariants

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Invariants connected with the module structure of the one-dimensional homology of a manifold $ \widetilde{M} $, freely acted upon by a free Abelian group $ J ^ {a} $ of rank $ a $ with a fixed system of generators $ t _ {1} \dots t _ {a} $.

The projection of the manifold $ \widetilde{M} $ onto the space $ M $ of orbits (cf. Orbit) is a covering which corresponds to the kernel $ K _ {a} $ of the homomorphism $ \gamma : G \rightarrow J _ {a} $ of the fundamental group $ \pi _ {1} (M) = G $ of the manifold $ M $. Since $ K _ {a} = \pi _ {1} ( \widetilde{M} ) $, the group $ B _ {a} = K _ {a} / K _ {a} ^ \prime $, where $ K _ {a} ^ \prime $ is the commutator subgroup of the kernel $ K _ {a} $, is isomorphic to the one-dimensional homology group $ H _ {1} ( \widetilde{M} , \mathbf Z ) $. The extension $ 1 \rightarrow K _ {a} \rightarrow G \rightarrow J ^ {a} \rightarrow 1 $ generates the extension $ (*) : 1 \rightarrow B _ {a} \rightarrow G/ K _ {a} ^ \prime \rightarrow J ^ {a} \rightarrow 1 $, which determines on $ B _ {a} $ the structure of a module over the integer group ring $ \mathbf Z (J ^ {a} ) $ of the group $ J ^ {a} $( cf. Group algebra). The same structure is induced on $ B _ {a} $ by the given action of $ J ^ {a} $ on $ \widetilde{M} $. Fixation of the generators $ t _ {i} $ in $ J ^ {a} $ identifies $ \mathbf Z ( J ^ {a} ) $ with the ring $ L _ {a} = L _ {a} (t _ {1} \dots t _ {a} ) = \mathbf Z [ t _ {1} , t ^ {-1} \dots t _ {a} , t _ {a} ^ {-1} ] $ of Laurent polynomials in the variables $ t _ {i} $. Purely algebraically the extension

defines and is defined by the extension of modules $ (**): 0 \rightarrow B _ {a} \rightarrow A _ {a} \rightarrow I _ {a} \rightarrow 0 $[5]. Here $ I _ {a} $ is the kernel of the homomorphism $ \epsilon : L _ {a} \rightarrow \mathbf Z $ $ ( \epsilon t _ {i} = 1 ) $. The module $ A _ {a} $ is called the Alexander module of the covering $ \widetilde{M} \rightarrow M $. In the case first studied by J.W. Alexander [1] when $ M = M (k) $ is the complementary space of some link $ k $ of multiplicity $ \mu $ in the three-dimensional sphere $ S ^ {3} $, while the covering corresponds to the commutation homomorphism $ \gamma _ \mu : G(k) \rightarrow J ^ \mu $ of the link group, $ A _ \mu $ is the Alexander module of the link $ k $. The principal properties of $ G $ which are relevant to what follows are: $ G/ G ^ \prime $ is a free Abelian group, the defect of the group $ G $ is 1, $ G $ has the presentation $ \{ x _ {1} \dots x _ {m+1} ; r _ {1} \dots r _ {m} \} $ for which $ \gamma _ \mu (x _ {i} ) = t _ {i} $, $ 1 \leq i \leq \mu $; $ \gamma _ \nu (x _ {i} ) = 1 $, $ i > \mu $( cf. Knot and link diagrams). In the case of links the generators $ t _ {i} \in J ^ \mu $ correspond to the meridians of the components $ k _ {i} \subset k $ and are fixed by the orientations of these components and of the sphere.

As a rule, $ M $ is the complementary space $ M(k) $ of $ k $, consisting of $ \mu $ $ (n - 2) $- dimensional spheres $ k _ {i} $ in $ S ^ {n} $. In addition to the homomorphism $ \gamma _ {m} $, one also considers the homomorphism $ \gamma _ \sigma : G(k) \rightarrow J $, where $ \gamma (x) $ is equal to the sum of the link coefficients of the loop representing $ x $ with all $ k _ {i} $.

The matrix $ \mathfrak M _ {a} $ of the module relations of a module $ A _ {a} $ is called the Alexander covering matrix and, in the case of links, the Alexander link matrix. It may be obtained as the matrix

$$ \left ( \frac{\partial r _ {i} }{\partial x _ {j} } \right ) ^ {\gamma _ {a} \phi } , $$

where $ \{ x _ {i} ; r _ {i} \} $ is a presentation of the group $ G $. If $ \mu = 1 $, the matrix $ \mathfrak N _ {a} $ of module relations for $ B _ {a} $ is obtained from $ \mathfrak M _ {a} $ by discarding the zero column. The matrices $ \mathfrak M _ {a} $ and $ \mathfrak N _ {a} $ are defined by the modules $ A _ {a} $ and $ B _ {a} $ up to transformations corresponding to transitions to other presentations of the module. However, they can be used to calculate a number of module invariants. Alexander ideals are ideals of the module $ A _ {a} $, i.e. series of ideals $ E _ {i} ( A _ {a} ) $ of the ring $ L _ {a} : (0) \subseteq E _ {0} \subseteq \dots \subseteq E _ {i-1} \subseteq E _ {i} \subseteq \dots \subseteq (1) $, where $ E _ {i} $ is generated by the minors of $ \mathfrak M _ {a} $ of order $ (m - i) \times (m - i) $ and $ E _ {i} = L _ {a} $ for $ m - i < 1 $. The opposite numbering sequence may also be employed. Since $ L _ {a} $ is both a Gaussian ring and a Noetherian ring, each ideal $ E _ {i} $ lies in a minimal principal ideal $ ( \Delta _ {i} ) $; its generator $ \Delta _ {i} $ is defined up to unit divisors $ t _ {i} ^ {k} $. The Laurent polynomial $ \Delta _ {i} (t _ {1} \dots t _ \mu ) $ is simply called the Alexander polynomial of $ k $( or of the covering $ \widetilde{M} \rightarrow M $). If $ \Delta _ {i} \neq 0 $, it is multiplied by $ t _ {1} ^ {k _ {1} } \dots t _ \mu ^ {k _ \mu } $ so that $ \Delta _ {i} (0 \dots 0) \neq 0 $ and $ \neq \infty $. To the homomorphism $ \gamma _ \sigma $ there correspond a module $ \overline{A}\; $, ideals $ \overline{E}\; _ {i} $ and polynomials $ \overline \Delta \; _ {i} $, designated, respectively, as Alexander's reduced module, Alexander's reduced ideals and Alexander's reduced polynomials of $ k $( or of the covering $ {\widetilde{M} } _ \sigma \rightarrow M $). If $ \mu = 1 $, then $ A = \overline{A}\; $. $ \mathfrak M ( \overline{A}\; ) $ is obtained from $ \mathfrak M $ by replacing all $ t _ {i} $ by $ t $. If $ \mu \geq 2 $, $ \overline \Delta \; _ {1} $ is divisible by $ {(t - 1) } ^ {\mu - 2 } $. The polynomial $ \nabla (t) = {\overline \Delta \; } _ {1} (t) / {(t - 1) } ^ {\mu - 2 } $ is known as the Hosokawa polynomial. The module properties of $ A (k) $ have been studied [4], [8], [10]. The case of links has not yet been thoroughly investigated. For $ \mu = 1 $, the group $ H _ {1} ( \widetilde{M} ; R) $ is finitely generated over any ring $ R $ containing $ \mathbf Z $ in which $ \Delta (0) $ is invertible [7], in particular over the field of rational numbers, and, if $ \Delta (0) = +1 $, then also over $ \mathbf Z $. In such a case $ \Delta (t) $ is the characteristic polynomial of the transformation $ t : H _ {1} ( \widetilde{M} ; R) \rightarrow H _ {1} ( \widetilde{M} ; R) $. The degree of $ \Delta _ {1} (t) $ is equal to the rank of $ H _ {1} ( \widetilde{M} ; R) $; in particular, $ \Delta _ {1} (t) = 1 $ if and only if $ H _ {1} ( \widetilde{M} ; \mathbf Z) = 0 $. If $ n = 3 $, the link ideals have the following symmetry property: $ E _ {i} = {\overline{E}\; } _ {i} $, where the bar denotes that the image is taken under the automorphism generated by replacing all $ t _ {i} $ by $ t _ {i} ^ {-1} $. It follows that $ \Delta _ {i} ( t _ {1} ^ {-1} \dots t _ \mu ^ {-1} ) = t _ {1} ^ {N _ {1} } \dots t _ \mu ^ {N _ \mu } \Delta _ {i} ( t _ {1} \dots t _ \mu ) $ for certain integers $ N _ {i} $. This symmetry is the result of the Fox–Trotter duality for knot and link groups. It may also be deduced from the Poincaré duality for the manifold $ \widetilde{M} $, taking into account the free action of $ J ^ {a} $[3]. If $ \Delta _ {1} (t _ {1} \dots t _ \mu ) \neq 0 $, then the chain complex $ C _ {*} ( \widetilde{M} ) $ over the field of fractions $ P _ \mu $ of the ring $ L _ \mu $ is acyclic ( $ n = 3 $), and the Reidemeister torsion $ \tau \in P _ \mu / \Pi $ corresponding to the imbedding $ L _ \mu \subset P _ \mu $, where $ \Pi $ is the group of units of $ L _ \mu $, is defined accordingly. If $ \mu = 2 $, then $ \tau = \Delta _ {1} $; if $ \mu = 1 $, then $ \tau = \Delta _ {1} / t - 1 $( up to units of $ L _ \mu $). The symmetry of $ \Delta _ {1} $ for $ n = 3 $ is a consequence of the symmetry of $ \tau $. If $ \mu = 1 $, it follows from the symmetry of $ \Delta _ {i} (t) $ and from the property $ \Delta _ {i} (1) = \pm 1 $ that the degree of $ \Delta _ {i} (t) $ is even. The degree of $ \nabla (t) $ is also even [4]. The following properties of the knot polynomials $ \Delta _ {i} (t) $ are characteristic: $ \Delta _ {i} (1) = \pm 1 $; $ \Delta _ {i} (t) = t ^ {2k} \Delta _ {i} ( t ^ {-1} ) $; $ \Delta _ {i+1} $ divides $ \Delta _ {i} $; and $ \Delta _ {i} = 1 $ for all $ i $ greater than a certain value $ N $, i.e. for each selection $ \Delta _ {i} (t) $ with these properties there exists a knot $ k $ for which they serve as the Alexander polynomials. The Hosokawa polynomials [4] are characterized by the property $ \nabla (t) = t ^ {2k} \nabla (t ^ {-1} ) $ for any $ \mu \geq 2 $; the polynomials $ \Delta _ {1} $ of two-dimensional knots by the property $ \Delta _ {1} (1) = 1 $.

Alexander invariants, and in the first place the polynomials, are powerful tools for distinguishing knots and links. Thus, $ \Delta _ {1} $ fails to distinguish between only three pairs out of the knots in a table containing fewer than 9 double points (cf. Knot table). See also Knot theory; Alternating knots and links.

References

[1] J.W. Alexander, "Topological invariants of knots and links" Trans. Amer. Math. Soc. , 30 (1928) pp. 275–306
[2] K. Reidemeister, "Knotentheorie" , Chelsea, reprint (1948)
[3] R.C. Blanchfield, "Intersection theory of manifolds with operators with applications to knot theory" Ann. of Math. (2) , 65 : 2 (1957) pp. 340–356
[4] F. Hosokawa, "On $\nabla$-polynomials of links" Osaka J. Math. , 10 (1958) pp. 273–282
[5] R.H. Crowell, "Corresponding groups and module sequences" Nagoya Math. J. , 19 (1961) pp. 27–40
[6] R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)
[7] L.P. Neuwirth, "Knot groups" , Princeton Univ. Press (1965)
[8] R.H. Crowell, "Torsion in link modules" J. Math. Mech. , 14 : 2 (1965) pp. 289–298
[9] J. Levine, "A method for generating link polynomials" Amer. J. Math. , 89 (1967) pp. 69–84
[10] J.W. Milnor, "Multidimensional knots" , Conference on the topology of manifolds , 13 , Boston (1968) pp. 115–133
How to Cite This Entry:
Alexander invariants. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Alexander_invariants&oldid=53254
This article was adapted from an original article by A.V. Chernavskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article