Namespaces
Variants
Actions

Adjoint module

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


contragradient module, dual module

The module of homomorphisms of a given module into the ground ring. More precisely, let $ M $ be a left module over a ring $ R $. The Abelian group $ \mathop{\rm Hom} _ {R} ( M , R ) $ of homomorphisms of $ M $ into $ R $ regarded as a left $ R $- module can be made into a right $ R $- module $ M ^ {*} $ by putting

$$ x ( \phi \lambda ) = \ ( x \phi ) \lambda ,\ \ x \in M ,\ \ \phi \in \mathop{\rm Hom} _ {R} ( M , R ) ,\ \ \lambda \in R . $$

This right module $ M ^ {*} $ is called the adjoint of $ M $. For $ x \in M $, one can define an element $ \overline{x}\; \in M ^ {**} $ by putting $ \overline{x}\; ( \phi ) = x( \phi ) $ for all $ \phi \in M ^ {*} $. This defines a homomorphism of $ M $ into $ M ^ {** } $. For any left $ R $- module $ C $, the mapping $ \zeta : M ^ {*} \otimes _ {R} C \rightarrow \mathop{\rm Hom} _ {R} ( M , C ) $ given by

$$ x ( ( \phi \otimes c ) \zeta ) = \ ( x \phi ) c ,\ \ x \in M ,\ \ \phi \in M ^ {*} ,\ \ c \in C , $$

is also a homomorphism. Both of these are isomorphisms when $ M $ is a finitely-generated projective module [2]. It follows from the properties of the functor $ \mathop{\rm Hom} $ that $ ( \sum M _ \alpha ) ^ {*} \simeq \prod M _ \alpha $( where $ \sum $ is the direct sum, and $ \prod $ the direct product) and that there is a homomorphism of $ M ^ {***} $ into $ M ^ {*} $. The composite mapping $ M ^ {*} \rightarrow M ^ {***} \rightarrow M ^ {*} $ is the identity, but $ M ^ {***} $ need not be isomorphic to $ M ^ {*} $. The torsion-free modules in the sense of Bass are those for which the above homomorphism of $ M $ into $ M ^ {**} $ turns out to be a monomorphism. This property is equivalent to the imbeddability of $ M $ in a direct product of copies of the ground ring. If $ R $ is right and left Noetherian, then the mapping $ M \mapsto M ^ {*} $ defines a duality between the categories of finitely-generated left and right $ R $- modules if and only if $ R $ is a Quasi-Frobenius ring.

References

[1] N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)
[2] S. MacLane, "Homology" , Springer (1963)
[3] A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)
How to Cite This Entry:
Adjoint module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adjoint_module&oldid=45039
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article