Namespaces
Variants
Actions

Difference between revisions of "Adams–Hilton model"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
m (tex encoded by computer)
 
Line 1: Line 1:
The Pontryagin algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103001.png" /> (cf. also [[Pontryagin invariant|Pontryagin invariant]]; [[Pontryagin class|Pontryagin class]]) of a [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103002.png" /> is an important [[Homotopy|homotopy]] invariant (cf. also [[Homotopy type|Homotopy type]]). It is, in general, quite difficult to calculate the homology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103003.png" /> directly from the chain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103004.png" />. An algorithm that associates to a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103005.png" /> a [[differential graded algebra]] whose homology is relatively easy to calculate and isomorphic as an algebra to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103006.png" /> is therefore of great value.
+
<!--
 +
a1103001.png
 +
$#A+1 = 52 n = 0
 +
$#C+1 = 52 : ~/encyclopedia/old_files/data/A110/A.1100300 Adams\ANDHilton model
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The Pontryagin algebra  $  H _ {*} \Omega X $(
 +
cf. also [[Pontryagin invariant|Pontryagin invariant]]; [[Pontryagin class|Pontryagin class]]) of a [[Topological space|topological space]] $  X $
 +
is an important [[Homotopy|homotopy]] invariant (cf. also [[Homotopy type|Homotopy type]]). It is, in general, quite difficult to calculate the homology $  H _ {*} \Omega X $
 +
directly from the chain complex $  C _ {*} \Omega X $.  
 +
An algorithm that associates to a space $  X $
 +
a [[differential graded algebra]] whose homology is relatively easy to calculate and isomorphic as an algebra to $  H _ {*} \Omega X $
 +
is therefore of great value.
  
 
In 1955, J.F. Adams and P.J. Hilton invented such an algorithm for the class of simply-connected CW-complexes [[#References|[a1]]]. Presented here in a somewhat more modern incarnation, due to S. Halperin, Y. Félix and J.-C. Thomas [[#References|[a5]]], the work of Adams and Hilton can be summarized as follows.
 
In 1955, J.F. Adams and P.J. Hilton invented such an algorithm for the class of simply-connected CW-complexes [[#References|[a1]]]. Presented here in a somewhat more modern incarnation, due to S. Halperin, Y. Félix and J.-C. Thomas [[#References|[a5]]], the work of Adams and Hilton can be summarized as follows.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103007.png" /> be a [[CW-complex|CW-complex]] such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103008.png" /> has exactly one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103009.png" />-cell and no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030010.png" />-cells and such that every attaching mapping is based with respect to the unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030011.png" />-cell of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030012.png" />. There exists a morphism of differential graded algebras inducing an isomorphism on homology (a quasi-isomorphism)
+
Let $  X $
 +
be a [[CW-complex|CW-complex]] such that $  X $
 +
has exactly one 0 $-
 +
cell and no $  1 $-
 +
cells and such that every attaching mapping is based with respect to the unique 0 $-
 +
cell of $  X $.  
 +
There exists a morphism of differential graded algebras inducing an isomorphism on homology (a quasi-isomorphism)
 +
 
 +
$$
 +
{\theta _ {X} } : {( TV,d ) } \rightarrow {C _ {*} \Omega X }
 +
$$
 +
 
 +
such that  $  \theta _ {X} $
 +
restricts to quasi-isomorphisms  $  ( TV _ {\leq  n }  ,d ) \rightarrow C _ {*} \Omega X _ {n + 1 }  $,
 +
where  $  X _ {n + 1 }  $
 +
denotes the  $  ( n + 1 ) $-
 +
skeleton of  $  X $,
 +
$  TV $
 +
denotes the free (tensor) algebra on a free graded  $  \mathbf Z $-
 +
module  $  V $,
 +
and  $  \Omega X $
 +
is the space of Moore loops on  $  X $.
 +
The morphism  $  \theta _ {X} $
 +
is called an Adams–Hilton model of  $  X $
 +
and satisfies the following properties.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030013.png" /></td> </tr></table>
+
$  ( TV,d ) $
 +
is unique up to isomorphism;
  
such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030014.png" /> restricts to quasi-isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030016.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030017.png" />-skeleton of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030019.png" /> denotes the free (tensor) algebra on a free graded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030020.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030022.png" /> is the space of Moore loops on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030023.png" />. The morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030024.png" /> is called an Adams–Hilton model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030025.png" /> and satisfies the following properties.
+
if  $  X = * \cup \cup _ {\alpha \in A }  e ^ {n _  \alpha  + 1 } $,  
 +
then  $  V $
 +
has a degree-homogeneous basis  $  \{ {v _  \alpha  } : {\alpha \in A } \} $
 +
such that  $  { \mathop{\rm deg} } v _  \alpha  = n  ^  \alpha  $;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030026.png" /> is unique up to isomorphism;
+
if  $  {f _  \alpha  } : {S ^ {n _  \alpha  } } \rightarrow {X _ {n _  \alpha  } } $
 +
is the attaching mapping of the cell  $  e ^ {n _  \alpha  + 1 } $,
 +
then  $  [ \theta ( dv _  \alpha  ) ] = {\mathcal K} _ {n _  \alpha  } [ f _  \alpha  ] $.  
 +
Here,  $  {\mathcal K} _ {n _  \alpha  } $
 +
is defined so that
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030027.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030028.png" /> has a degree-homogeneous basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030029.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030030.png" />;
+
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030031.png" /> is the attaching mapping of the cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030032.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030033.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030034.png" /> is defined so that
+
\begin{array}{ccc}
 +
\pi _ {n _  \alpha  } X _ {n _  \alpha  }  &  \mathop \rightarrow \limits ^ { \approx }    &\Omega X _ {n _  \alpha  }  \\
 +
{} _ { {\mathcal K} _ {n _  \alpha  } } \downarrow  &{}  &\downarrow _ {h}  \\
 +
H _ {n _  \alpha  - 1 } \Omega X _ {n _  \alpha  }  & =   &H _ {n _  \alpha  - 1 } \Omega X _ {n _  \alpha  }  \\
 +
\end{array}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030035.png" /></td> </tr></table>
+
$$
  
commutes, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030036.png" /> denotes the Hurewicz homomorphism (cf. [[Homotopy group|Homotopy group]]).
+
commutes, where $  h $
 +
denotes the Hurewicz homomorphism (cf. [[Homotopy group|Homotopy group]]).
  
The Adams–Hilton model has proved to be a powerful tool for calculating the Pontryagin algebra of CW-complexes. Many common spaces have Adams–Hilton models that are relatively simple and thus well-adapted to computations. For example, with respect to its usual CW-decomposition, the Adams–Hilton model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030037.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030040.png" />.
+
The Adams–Hilton model has proved to be a powerful tool for calculating the Pontryagin algebra of CW-complexes. Many common spaces have Adams–Hilton models that are relatively simple and thus well-adapted to computations. For example, with respect to its usual CW-decomposition, the Adams–Hilton model of $  \mathbf C P  ^ {n} $
 +
is  $  ( T ( a _ {1} \dots a _ {n} ) ,d ) $,
 +
where $  { \mathop{\rm deg} } a _ {i} = 2i - 1 $
 +
and  $  da _ {i} = \sum _ {j + k = i - 1 }  a _ {j} a _ {k} $.
  
Given a cellular mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030041.png" /> between CW-complexes, it is possible to use the Adams–Hilton model to compute the induced homomorphism of Pontryagin algebras. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030043.png" /> are Adams–Hilton models, then there exists a unique homotopy class of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030044.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030045.png" /> is homotopic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030046.png" />. Any representative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030047.png" /> of this homotopy class can be said to be an Adams–Hilton model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030048.png" />. In this context,  "homotopy"  means homotopy in the category of differential graded algebras (see [[#References|[a2]]] or [[#References|[a5]]] for more details).
+
Given a cellular mapping $  f : X \rightarrow Y $
 +
between CW-complexes, it is possible to use the Adams–Hilton model to compute the induced homomorphism of Pontryagin algebras. If $  {\theta _ {X} } : {( TV,d ) } \rightarrow {C _ {*} \Omega X } $
 +
and $  {\theta _ {Y} } : {( TW,d ) } \rightarrow {C _ {*} \Omega Y } $
 +
are Adams–Hilton models, then there exists a unique homotopy class of morphisms $  \phi : {( TV,d ) } \rightarrow {( TW,d ) } $
 +
such that $  C _ {*} \Omega g \circ \theta _ {X} $
 +
is homotopic to $  \theta _ {Y} \circ \phi $.  
 +
Any representative $  \phi $
 +
of this homotopy class can be said to be an Adams–Hilton model of $  g $.  
 +
In this context,  "homotopy"  means homotopy in the category of differential graded algebras (see [[#References|[a2]]] or [[#References|[a5]]] for more details).
  
One can say, for example, that an Adams–Hilton model of a cellular co-fibration of CW-complexes, i.e., an inclusion of CW-complexes, is a free extension of differential graded algebras. Furthermore, the Adams–Hilton model of the amalgamated sum of an inclusion of CW-complexes, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030049.png" />, and any other cellular mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030050.png" /> is given by the amalgamated sum of the free extension modelling <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030051.png" /> and an Adams–Hilton model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030052.png" />.
+
One can say, for example, that an Adams–Hilton model of a cellular co-fibration of CW-complexes, i.e., an inclusion of CW-complexes, is a free extension of differential graded algebras. Furthermore, the Adams–Hilton model of the amalgamated sum of an inclusion of CW-complexes, $  \iota $,  
 +
and any other cellular mapping $  g $
 +
is given by the amalgamated sum of the free extension modelling $  \iota $
 +
and an Adams–Hilton model of $  g $.
  
 
Examples of problems to which Adams–Hilton models have been applied to great advantage include the study of the holonomy action in fibrations [[#References|[a4]]] and the study of the effect on the Pontryagin algebra of the attachment of a cell to a CW-complex [[#References|[a3]]], [[#References|[a6]]].
 
Examples of problems to which Adams–Hilton models have been applied to great advantage include the study of the holonomy action in fibrations [[#References|[a4]]] and the study of the effect on the Pontryagin algebra of the attachment of a cell to a CW-complex [[#References|[a3]]], [[#References|[a6]]].

Latest revision as of 16:08, 1 April 2020


The Pontryagin algebra $ H _ {*} \Omega X $( cf. also Pontryagin invariant; Pontryagin class) of a topological space $ X $ is an important homotopy invariant (cf. also Homotopy type). It is, in general, quite difficult to calculate the homology $ H _ {*} \Omega X $ directly from the chain complex $ C _ {*} \Omega X $. An algorithm that associates to a space $ X $ a differential graded algebra whose homology is relatively easy to calculate and isomorphic as an algebra to $ H _ {*} \Omega X $ is therefore of great value.

In 1955, J.F. Adams and P.J. Hilton invented such an algorithm for the class of simply-connected CW-complexes [a1]. Presented here in a somewhat more modern incarnation, due to S. Halperin, Y. Félix and J.-C. Thomas [a5], the work of Adams and Hilton can be summarized as follows.

Let $ X $ be a CW-complex such that $ X $ has exactly one $ 0 $- cell and no $ 1 $- cells and such that every attaching mapping is based with respect to the unique $ 0 $- cell of $ X $. There exists a morphism of differential graded algebras inducing an isomorphism on homology (a quasi-isomorphism)

$$ {\theta _ {X} } : {( TV,d ) } \rightarrow {C _ {*} \Omega X } $$

such that $ \theta _ {X} $ restricts to quasi-isomorphisms $ ( TV _ {\leq n } ,d ) \rightarrow C _ {*} \Omega X _ {n + 1 } $, where $ X _ {n + 1 } $ denotes the $ ( n + 1 ) $- skeleton of $ X $, $ TV $ denotes the free (tensor) algebra on a free graded $ \mathbf Z $- module $ V $, and $ \Omega X $ is the space of Moore loops on $ X $. The morphism $ \theta _ {X} $ is called an Adams–Hilton model of $ X $ and satisfies the following properties.

$ ( TV,d ) $ is unique up to isomorphism;

if $ X = * \cup \cup _ {\alpha \in A } e ^ {n _ \alpha + 1 } $, then $ V $ has a degree-homogeneous basis $ \{ {v _ \alpha } : {\alpha \in A } \} $ such that $ { \mathop{\rm deg} } v _ \alpha = n ^ \alpha $;

if $ {f _ \alpha } : {S ^ {n _ \alpha } } \rightarrow {X _ {n _ \alpha } } $ is the attaching mapping of the cell $ e ^ {n _ \alpha + 1 } $, then $ [ \theta ( dv _ \alpha ) ] = {\mathcal K} _ {n _ \alpha } [ f _ \alpha ] $. Here, $ {\mathcal K} _ {n _ \alpha } $ is defined so that

$$ \begin{array}{ccc} \pi _ {n _ \alpha } X _ {n _ \alpha } & \mathop \rightarrow \limits ^ { \approx } &\Omega X _ {n _ \alpha } \\ {} _ { {\mathcal K} _ {n _ \alpha } } \downarrow &{} &\downarrow _ {h} \\ H _ {n _ \alpha - 1 } \Omega X _ {n _ \alpha } & = &H _ {n _ \alpha - 1 } \Omega X _ {n _ \alpha } \\ \end{array} $$

commutes, where $ h $ denotes the Hurewicz homomorphism (cf. Homotopy group).

The Adams–Hilton model has proved to be a powerful tool for calculating the Pontryagin algebra of CW-complexes. Many common spaces have Adams–Hilton models that are relatively simple and thus well-adapted to computations. For example, with respect to its usual CW-decomposition, the Adams–Hilton model of $ \mathbf C P ^ {n} $ is $ ( T ( a _ {1} \dots a _ {n} ) ,d ) $, where $ { \mathop{\rm deg} } a _ {i} = 2i - 1 $ and $ da _ {i} = \sum _ {j + k = i - 1 } a _ {j} a _ {k} $.

Given a cellular mapping $ f : X \rightarrow Y $ between CW-complexes, it is possible to use the Adams–Hilton model to compute the induced homomorphism of Pontryagin algebras. If $ {\theta _ {X} } : {( TV,d ) } \rightarrow {C _ {*} \Omega X } $ and $ {\theta _ {Y} } : {( TW,d ) } \rightarrow {C _ {*} \Omega Y } $ are Adams–Hilton models, then there exists a unique homotopy class of morphisms $ \phi : {( TV,d ) } \rightarrow {( TW,d ) } $ such that $ C _ {*} \Omega g \circ \theta _ {X} $ is homotopic to $ \theta _ {Y} \circ \phi $. Any representative $ \phi $ of this homotopy class can be said to be an Adams–Hilton model of $ g $. In this context, "homotopy" means homotopy in the category of differential graded algebras (see [a2] or [a5] for more details).

One can say, for example, that an Adams–Hilton model of a cellular co-fibration of CW-complexes, i.e., an inclusion of CW-complexes, is a free extension of differential graded algebras. Furthermore, the Adams–Hilton model of the amalgamated sum of an inclusion of CW-complexes, $ \iota $, and any other cellular mapping $ g $ is given by the amalgamated sum of the free extension modelling $ \iota $ and an Adams–Hilton model of $ g $.

Examples of problems to which Adams–Hilton models have been applied to great advantage include the study of the holonomy action in fibrations [a4] and the study of the effect on the Pontryagin algebra of the attachment of a cell to a CW-complex [a3], [a6].

References

[a1] J.F. Adams, P.J. Hilton, "On the chain algebra of a loop space" Comment. Math. Helv. , 30 (1955) pp. 305–330
[a2] D.J. Anick, "Hopf algebras up to homotopy" J. Amer. Math. Soc. , 2 (1989) pp. 417–453
[a3] Y. Félix, J.-M. Lemaire, "On the Pontrjagin algebra of the loops on a space with a cell attached" Internat. J. Math. , 2 (1991)
[a4] Y. Félix, J.-C. Thomas, "Module d'holonomie d'une fibration" Bull. Soc. Math. France , 113 (1985) pp. 255–258
[a5] S. Halperin, Y. Félix, J.-C. Thomas, "Rational homotopy theory" , Univ. Toronto (1996) (Preprint)
[a6] K. Hess, J.-M- Lemaire, "Nice and lazy cell attachments" J. Pure Appl. Algebra , 112 (1996) pp. 29–39
How to Cite This Entry:
Adams–Hilton model. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adams%E2%80%93Hilton_model&oldid=39582
This article was adapted from an original article by K. Hess (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article