Namespaces
Variants
Actions

Abstract wave equation

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Consider the Cauchy problem for the wave equation

with the Dirichlet boundary conditions $u ( x , t ) = 0$ or the Neumann boundary conditions $\sum _ { i ,\, j = 1 } ^ { m } a _ { i ,\, j } ( x ) n _ { i } ( x ) \partial u / \partial x _ { j } = 0$, $( x , t ) \in \partial \Omega \times [ 0 , T ]$.

Here, $\Omega \subset \mathbf{R} ^ { m }$ is a bounded domain with smooth boundary $\partial \Omega$, $a_{i,j} ( x ) = a _ { j , i } ( x )$ and $c ( x ) > 0$ are smooth real functions on $\Omega$ such that $\sum _ { i ,\, j = 1 } ^ { m } a _ { i ,\, j } ( x ) \xi _ { i } \xi _ { j } \geq \delta | \xi | ^ { 2 }$ for all $\xi = ( \xi _ { 1 } , \ldots , \xi _ { m } ) \in \mathbf R ^ { m }$, with some fixed $\delta > 0$; $n = ( n _{1} , \ldots , n _ { m } )$ is the unit outward normal vector to $\partial \Omega$. Also, $f ( x , t )$, $u_{0} ( x )$, $u _ { 1 } ( x )$ are given functions. The function $u ( x , t )$ is the unknown function.

One can state this problem in the abstract form

\begin{equation} \tag{a1} \left\{ \begin{array} { l } { \frac { d ^ { 2 } u } { d t ^ { 2 } } + A u = f ( t ) , \qquad t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 }, } \end{array} \right. \end{equation}

which is considered in the Hilbert space $L ^ { 2 } ( \Omega )$. Here, $A ( t )$ is the self-adjoint operator of $L ^ { 2 } ( \Omega )$ determined from the symmetric sesquilinear form

\begin{equation} \tag{a2} a ( u , v ) = \int _ { \Omega } \left[ \sum _ { i , j = 1 } ^ { m } a _ { i , j } \frac { \partial u } { \partial x _ { i } } \frac { \partial \bar{v} } { \partial x _ { j } } + c ( x ) u \bar{v} \right] d x \end{equation}

on the space $V$, see [a1], where $V = H _ { 0 } ^ { 1 } ( \Omega )$ (respectively $V = H ^ { 1 } ( \Omega )$) when the boundary conditions are Dirichlet (respectively, Neumann), by the relation $A u = f$ if and only if $a ( u , v ) = ( f , v ) _ { L ^ { 2 }}$ for all $v \in V$. There are several ways to handle this abstract problem.

Let $X$ be a Banach space. A strongly continuous function $S ( t )$ of $t \in \mathbf{R}$ with values in $L ( X )$ is called a cosine function if it satisfies $S ( s + t ) + S ( s - t ) = 2 S ( s ) S ( t )$, $s , t \in \mathbf{R}$, and $S ( 0 ) = 1$. Its infinitesimal generator $A$ is defined by $A = S ^ { \prime \prime } ( 0 )$, with $D ( A ) = \left\{ u \in X : S ( . ) u \in C ^ { 2 } ( \mathbf{R} ; X ) \right\}$. The theory of cosine functions, which is very similar to the theory of semi-groups, was originated by S. Kurera [a2] and was developed by H.O. Fattorini [a3] and others.

A necessary and sufficient condition for a closed linear operator $A$ to be the generator of a cosine family is known. The operator determined by (a2) is easily shown to generate a cosine function which provides a fundamental solution for (a1).

Suppose one sets $v = d u / d t$ in (a1). Then one obtains the equivalent problem

\begin{equation*} \left\{ \begin{array} { l } { \frac { d } { d t } \left( \begin{array} { c } { u } \\ { v } \end{array} \right) + \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right) \left( \begin{array} { c } { u } \\ { v } \end{array} \right) = \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) , \quad t \in [ 0 , T ], } \\ { \left( \begin{array} { c } { u ( 0 ) } \\ { v ( 0 ) } \end{array} \right) = \left( \begin{array} { c } { u _ { 0 } } \\ { u _ { 1 } } \end{array} \right), } \end{array} \right. \end{equation*}

which is considered in the product space $V \times L ^ { 2 } ( \Omega )$. Since the equation is of first order, one can apply semi-group theory (see [a4], [a5]). Indeed, the operator

\begin{equation*} \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right) \end{equation*}

with its domain $D ( A ) \times V$ is the negative generator of a $C _ { 0 }$ semi-group. The theory of semi-groups of abstract evolution equations provides the existence of a unique solution $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ of (a1) for $f \in C ( [ 0 , T ] ; V )$ and $u _ { 0 } \in D ( A )$, $u _ { 1 } \in V$.

This method is also available for a non-autonomous equation

\begin{equation} \tag{a3} \frac { d ^ { 2 } u } { d t ^ { 2 } } + A ( t ) u = f ( t ) , t \in [ 0 , T ]. \end{equation}

In the case of Neumann boundary conditions, the difficulty arises that the domain of

\begin{equation*} \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right) \end{equation*}

may change with $t$. One way to avoid this is to introduce the extension $\mathcal{A} ( t )$ of $A ( t )$ defined by $a ( t ; u , v ) = \langle \mathcal{A} ( t ) u , v \rangle _ { (H^1)^ { \prime } \times H^1}$ for all $v \in H ^ { 1 } ( \Omega )$. Since $\mathcal{A} ( t )$ is a bounded operator from $H ^ { 1 } ( \Omega )$ into $( H ^ { 1 } ( \Omega ) ) ^ { \prime }$, the operator

\begin{equation*} \left( \begin{array} { c c } { 0 } & { - 1 } \\ { {\cal A} ( t ) } & { 0 } \end{array} \right), \end{equation*}

acting in $L ^ { 2 } ( \Omega ) \times ( H ^ { 1 } ( \Omega ) ) ^ { \prime }$, has constant domain.

Another way is to reduce (a3) to

\begin{equation*} \frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) = \end{equation*}

\begin{equation*} = \left( \begin{array} { c c } { \frac { d A ( t ) ^ { 1 / 2 } } { d t } A ( t ) ^ { - 1 / 2 } } & { i A ( t ) ^ { 1 / 2 } } \\ { i A ( t ) ^ { 1 / 2 } } & { 0 } \end{array} \right) \left( \begin{array} { c } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) + \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) ,\, t \in [ 0 , T ], \end{equation*}

by setting $v _ { 0 } = i A ( t ) ^ { 1 / 2 } u$, $v _ { 1 } = d u / d t$, under the assumption that $A ( t ) ^ { 1 / 2 }$ is strongly differentiable with values in $L ( H ^ { 1 } ( \Omega ) , L ^ { 2 } ( \Omega ) )$. Obviously, the linear operator of the coefficient has constant domain $H ^ { 1 } ( \Omega ) \times H ^ { 1 } ( \Omega )$. Differentiability of the square root $A ( t ) ^ { 1 / 2 }$ was studied in [a6], [a7].

In order to consider in (a1) the case when $f \in L ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$, one has to use the Lions–Magenes variational formulation. In this, one is concerned with the solution $u$ of the problem

\begin{equation*} \left. \begin{cases} { \left( \frac { d ^ { 2 } u } { d t ^ { 2 } } , v \right) _ { L ^ { 2 } } + a ( u , v ) = ( f ( t ) , v ) _ { L ^ { 2 } } }, \\ { \text { a.e. } t \in [ 0 , T ] , v \in V ,} \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 }. } \end{cases} \right. \end{equation*}

The existence of a unique solution $u \in L ^ { 2 } ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap H ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ has been proved if $f \in H ^ { 1 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ and $u _ { 0 } \in D ( A )$, $u _ { 1 } \in V$; see [a8], Chap. 5.

This method is also available for a non-autonomous equation (a3).

The variational method enables one to take $f ( x , t )$ from a wide class, an advantage that is very useful in, e.g., the study of optimal control problems. On the other hand, the semi-group method provides regular solutions, which is often important in applications to non-linear problems. Using these approaches, many papers have been devoted to non-linear wave equations.

References

[a1] J.-L. Lions, "Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs" J. Math. Soc. Japan , 14 (1962) pp. 233–241
[a2] S. Kurepa, "A cosine functional equation in Hilbert spaces" Canad. J. Math. , 12 (1960) pp. 45–50
[a3] H.O. Fattorini, "Ordinary differential equations in linear topological spaces II" J. Diff. Eq. , 6 (1969) pp. 50–70
[a4] E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)
[a5] K. Yoshida, "Functional analysis" , Springer (1957)
[a6] A. McIntosh, "Square roots of elliptic operators" J. Funct. Anal. , 61 (1985) pp. 307–327
[a7] A. Yagi, "Applications of the purely imaginary powers of operators in Hilbert spaces" J. Funct. Anal. , 73 (1987) pp. 216–231
[a8] J.-L. Lions, E. Magenes, "Problèmes aux limites non homogènes et applications" , 1–2 , Dunod (1968)
How to Cite This Entry:
Abstract wave equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abstract_wave_equation&oldid=50744
This article was adapted from an original article by A. Yagi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article