Namespaces
Variants
Actions

Abhyankar–Moh theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An affine algebraic variety $X \subset k^n$ (with $k$ an algebraically closed field of characteristic zero) is said to have the Abhyankar–Moh property if every imbedding $\phi : X \rightarrow k^n$ extends to an automorphism of $k^n$. The original Abhyankar–Moh theorem states that an imbedded affine line in $k^2$ has the Abhyankar–Moh property, [a1].

The algebraic version of this theorem (which works over any field) is as follows. Let $k$ be a field of characteristic $p \ge 0$. Let $f,g \in k[T] \setminus k$ be such that $k[f,g] = k[T]$. Let $n = \deg f$ and $m = \deg g$. If $p > 0$, suppose in addition that $p$ does not divide $\mathrm{hcf}(f,g)$. Then $m$ divides $n$ or $n$ divides $m$.

If $X \subset \mathbb{C}^n$ has $\dim X$ small in comparison with $n$ and has "nice" singularities, then $X$ has the Abhyankar–Moh property [a2], [a4], [a5]. For every $n$, the $n$-cross $\{x \in \mathbb{C}^n : x_1\cdots x_n = 0 \}$ has the Abhyankar–Moh property, [a3]. The case of a hyperplane in $\mathbb{C}^n$ is still open (1998).

References

[a1] S.S. Abhyankar, T-t. Moh, "Embeddings of the line in the plane" J. Reine Angew. Math. , 276 (1975) pp. 148–166
[a2] Z. Jelonek, "A note about the extension of polynomial embeddings" Bull. Polon. Acad. Sci. Math. , 43 (1995) pp. 239–244
[a3] Z. Jelonek, "A hypersurface that has the Abhyankar–Moh property" Math. Ann. , 308 (1997) pp. 73–84
[a4] S. Kalliman, "Extensions of isomrphisms between affine algebraic subvarieties of $k^n$ to automorphisms of $k^n$" Proc. Amer. Math. Soc. , 113 (1991) pp. 325–334
[a5] V. Srinivas, "On the embedding dimension of the affine variety" Math. Ann. , 289 (1991) pp. 125–132
How to Cite This Entry:
Abhyankar–Moh theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abhyankar%E2%80%93Moh_theorem&oldid=35889
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article