Namespaces
Variants
Actions

Difference between revisions of "Abelian differential"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
A holomorphic or meromorphic differential on a compact, or closed, Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102101.png" /> (cf. [[Differential on a Riemann surface|Differential on a Riemann surface]]).
+
<!--
 +
a0102101.png
 +
$#A+1 = 145 n = 0
 +
$#C+1 = 145 : ~/encyclopedia/old_files/data/A010/A.0100210 Abelian differential
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102102.png" /> be the genus of the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102103.png" /> (cf. [[Genus of a surface|Genus of a surface]]); let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102104.png" /> be the cycles of a canonical basis of the homology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102105.png" />. Depending on the nature of their singular points, one distinguishes three kinds of Abelian differentials: I, II and III, with proper inclusions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102106.png" />. Abelian differentials of the first kind are first-order differentials that are holomorphic everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102107.png" /> and that, in a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102108.png" /> of each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102109.png" />, have the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021011.png" /> is a local uniformizing variable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021013.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021014.png" /> is a holomorphic, or regular, analytic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021016.png" />. The addition of Abelian differentials and multiplication by a holomorphic function are defined by natural rules: If
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021017.png" /></td> </tr></table>
+
A holomorphic or meromorphic differential on a compact, or closed, Riemann surface  $  S $(
 +
cf. [[Differential on a Riemann surface|Differential on a Riemann surface]]).
 +
 
 +
Let  $  g $
 +
be the genus of the surface  $  S $(
 +
cf. [[Genus of a surface|Genus of a surface]]); let  $  a _ {1} b _ {1} \dots a _ {g} b _ {g} $
 +
be the cycles of a canonical basis of the homology of  $  S $.
 +
Depending on the nature of their singular points, one distinguishes three kinds of Abelian differentials: I, II and III, with proper inclusions  $  I \subset  II \subset  III $.
 +
Abelian differentials of the first kind are first-order differentials that are holomorphic everywhere on  $  S $
 +
and that, in a neighbourhood  $  U $
 +
of each point  $  P _ {0} \in S $,
 +
have the form  $  \omega = p  d z = p (z)  d z $,
 +
where  $  z = x + iy $
 +
is a local uniformizing variable in  $  U $,
 +
$  d z = d x + i  dy $,
 +
and  $  p (z) $
 +
is a holomorphic, or regular, analytic function of  $  z $
 +
in  $  U $.
 +
The addition of Abelian differentials and multiplication by a holomorphic function are defined by natural rules: If
 +
 
 +
$$
 +
\omega  = p  dz,\  \pi  = q  dz,\  a  = a (z),
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021018.png" /></td> </tr></table>
+
$$
 +
\omega + \pi  = (p + q )  dz,\  a \omega  = (a p )  dz.
 +
$$
  
The Abelian differentials of the first kind form a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021019.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021020.png" />. After the introduction of the scalar product
+
The Abelian differentials of the first kind form a $  g $-
 +
dimensional vector space $  \mathfrak A $.  
 +
After the introduction of the scalar product
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021021.png" /></td> </tr></table>
+
$$
 +
( \omega , \pi )  = {\int\limits \int\limits } _ { S } \omega \star \overline \pi \; ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021022.png" /> is the [[Exterior product|exterior product]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021023.png" /> with the star-conjugate differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021024.png" />, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021025.png" /> becomes a Hilbert space.
+
where $  \omega \star \overline \pi \; $
 +
is the [[Exterior product|exterior product]] of $  \omega $
 +
with the star-conjugate differential $  \overline \pi \; $,  
 +
the space $  \mathfrak A $
 +
becomes a Hilbert space.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021026.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021027.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021028.png" />-periods of the Abelian differential of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021029.png" />, i.e. the integrals
+
Let $  A _ {1} , B _ {1} \dots A _ {g} , B _ {g} $
 +
be the $  A $-  
 +
and $  B $-
 +
periods of the Abelian differential of the first kind $  \omega $,  
 +
i.e. the integrals
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021030.png" /></td> </tr></table>
+
$$
 +
A _ {j}  = \int\limits _ {a _ {j} } \omega ,\ \
 +
B _ {j}  = \int\limits _ {b _ {j} } \omega ,\ \
 +
j = 1 \dots g .
 +
$$
  
 
The following relation then holds:
 
The following relation then holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\| \omega \|  ^ {2}  = i \sum _ {j = 1 } ^ { g }
 +
( A _ {j} \overline{B}\; _ {j} - B _ {j} \overline{A}\; _ {j} )  \geq  0 .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021032.png" /> are the periods of another Abelian differential of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png" />, then one has
+
If $  A _ {1}  ^  \prime  , B _ {1}  ^  \prime  \dots A _ {g}  ^  \prime  , B _ {g}  ^  \prime  $
 +
are the periods of another Abelian differential of the first kind $  \pi $,  
 +
then one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
i ( \omega , \overline \pi \; = \sum _ {j = 1 } ^ { g }
 +
( A _ {j} B _ {j}  ^  \prime  - B _ {j} A _ {j}  ^  \prime  )  = 0 .
 +
$$
  
The relations (1) and (2) are known as the bilinear Riemann relations for Abelian differentials of the first kind. A canonical basis of the Abelian differentials of the first kind, i.e. a canonical basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021035.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021036.png" />, can be chosen so that
+
The relations (1) and (2) are known as the bilinear Riemann relations for Abelian differentials of the first kind. A canonical basis of the Abelian differentials of the first kind, i.e. a canonical basis $  \phi _ {1} \dots \phi _ {g} $
 +
of the space $  \mathfrak A $,  
 +
can be chosen so that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021037.png" /></td> </tr></table>
+
$$
 +
A _ {ij }  = \int\limits _ {a _ {j} } \phi _ {i}  = \delta _ {ij }  ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021039.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021040.png" />. The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021042.png" />, of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021043.png" />-periods
+
where $  \delta _ {ii} = 1 $
 +
and $  \delta _ {ij} = 0 $
 +
if $  j \neq i $.  
 +
The matrix $  (B _ {ij} ) $,
 +
$  i, j = 1 \dots g $,  
 +
of the $  B $-
 +
periods
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021044.png" /></td> </tr></table>
+
$$
 +
B _ {ij}  = \int\limits _ {b _ {j} } \phi _ {i}  $$
  
is then symmetric, and the matrix of the imaginary parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021045.png" /> is positive definite. An Abelian differential of the first kind for which all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021046.png" />-periods or all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021047.png" />-periods are zero is identically equal to zero. If all the periods of an Abelian differential of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021048.png" /> are real, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021049.png" />.
+
is then symmetric, and the matrix of the imaginary parts $  (  \mathop{\rm Im}  B _ {ij} ) $
 +
is positive definite. An Abelian differential of the first kind for which all the $  A $-
 +
periods or all the $  B $-
 +
periods are zero is identically equal to zero. If all the periods of an Abelian differential of the first kind $  \omega $
 +
are real, then $  \omega = 0 $.
  
Abelian differentials of the second and third kinds are, in general, meromorphic differentials, i.e. analytic differentials which have on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021050.png" /> not more than a finite set of singular points that are poles and which have local representations
+
Abelian differentials of the second and third kinds are, in general, meromorphic differentials, i.e. analytic differentials which have on $  S $
 +
not more than a finite set of singular points that are poles and which have local representations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021051.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\left ( a _
 +
\frac{-n}{z}
 +
  ^ {n}
 +
+ \dots + a _
 +
\frac{-1}{z}
 +
+ f ( z ) \right ) dz,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021052.png" /> is a regular function, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021053.png" /> is the order of the pole (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021054.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021055.png" /> is the residue of the pole. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021056.png" />, the pole is said to be simple. An Abelian differential of the second kind is a meromorphic differential all residues of which are zero, i.e. a meromorphic differential with local representation
+
where $  f(z) $
 +
is a regular function, $  n $
 +
is the order of the pole (if $  a _ {-n} \neq 0 $),  
 +
and a _ {-1} $
 +
is the residue of the pole. If $  n = 1 $,  
 +
the pole is said to be simple. An Abelian differential of the second kind is a meromorphic differential all residues of which are zero, i.e. a meromorphic differential with local representation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021057.png" /></td> </tr></table>
+
$$
 +
\left ( a _
 +
\frac{-n}{z}
 +
  ^ {n}
 +
+ \dots + a _
 +
\frac{-2}{z}
 +
  ^ {2} + f ( z ) \right )  dz,
 +
$$
  
 
An Abelian differential of the third kind is an arbitrary Abelian differential.
 
An Abelian differential of the third kind is an arbitrary Abelian differential.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021058.png" /> be an arbitrary Abelian differential with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021059.png" />-periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021060.png" />; the Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021061.png" /> then has zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021062.png" />-periods and is known as a normalized Abelian differential. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021064.png" /> are any two points on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021065.png" />, one can construct a normalized Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021066.png" /> with the singularities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021067.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021069.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021070.png" />, which is known as a normal Abelian differential of the third kind. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021071.png" /> be an arbitrary Abelian differential with residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021072.png" /> at the respective points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021073.png" />; then, always, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021074.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021075.png" /> is any arbitrary point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021076.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021078.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021079.png" /> can be represented as a linear combination of a normalized Abelian differential of the second kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021080.png" />, a finite number of normal Abelian differentials of the third kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021081.png" />, and basis Abelian differentials of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021082.png" />:
+
Let $  \omega $
 +
be an arbitrary Abelian differential with $  A $-
 +
periods $  A _ {1} \dots A _ {g} $;  
 +
the Abelian differential $  \omega  ^  \prime  = \omega - A _ {1} \phi _ {1} - \dots -A _ {g} \phi _ {g} $
 +
then has zero $  A $-
 +
periods and is known as a normalized Abelian differential. In particular, if $  P _ {1} $
 +
and $  P _ {2} $
 +
are any two points on $  S $,  
 +
one can construct a normalized Abelian differential $  \omega _ {1,2} $
 +
with the singularities $  (1/z)  d z $
 +
in $  P _ {1} $
 +
and $  (-1/z)  d z $
 +
in $  P _ {2} $,  
 +
which is known as a normal Abelian differential of the third kind. Let $  \omega $
 +
be an arbitrary Abelian differential with residues $  c _ {1} \dots c _ {n} $
 +
at the respective points $  P _ {1} \dots P _ {n} $;  
 +
then, always, $  c _ {1} + \dots + c _ {n} = 0 $.  
 +
If $  P _ {0} $
 +
is any arbitrary point on $  S $
 +
such that $  P _ {0} \neq P _ {j} $,  
 +
$  j = 1 \dots n $,  
 +
then $  \omega $
 +
can be represented as a linear combination of a normalized Abelian differential of the second kind $  \omega _ {2} $,  
 +
a finite number of normal Abelian differentials of the third kind $  \omega _ {j,0} $,  
 +
and basis Abelian differentials of the first kind $  \phi _ {k} $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021083.png" /></td> </tr></table>
+
$$
 +
\omega  = \omega _ {2} + \sum _ {j=1 } ^ { n }  c _ {j} \omega _ {j,0} +
 +
\sum _ {k= 1 } ^ { g }  A _ {k} \phi _ {k} .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021084.png" /> be an Abelian differential of the third kind with only simple poles with residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021085.png" /> at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021087.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021088.png" /> be an arbitrary Abelian differential of the first kind:
+
Let $  \omega _ {3} $
 +
be an Abelian differential of the third kind with only simple poles with residues $  c _ {j} $
 +
at the points $  P _ {j} $,  
 +
$  j = 1 \dots n $,  
 +
and let $  \omega _ {1} $
 +
be an arbitrary Abelian differential of the first kind:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021089.png" /></td> </tr></table>
+
$$
 +
A _ {k}  = \int\limits _ {a _ {k} } \omega _ {1} ,\ \
 +
B _ {k}  = \int\limits _ {b _ {k} } \omega _ {1} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021090.png" /></td> </tr></table>
+
$$
 +
A _ {k}  ^  \prime  = \int\limits _ {a _ {k} } \omega _ {3} ,\ \
 +
B _ {k}  ^  \prime  = \int\limits _ {b _ {k} } \omega _ {3} ,\  k = 1 \dots g,
 +
$$
  
where the cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021091.png" /> do not pass through the poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021092.png" />. Let the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021093.png" /> not lie on the cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021094.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021095.png" /> be a path from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021096.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021097.png" />. One then obtains bilinear relations for Abelian differentials of the first and third kinds:
+
where the cycles a _ {k} , b _ {k} $
 +
do not pass through the poles of $  \omega _ {3} $.  
 +
Let the point $  P _ {0} \in S $
 +
not lie on the cycles a _ {k} , b _ {k} $
 +
and let $  L _ {j} $
 +
be a path from $  P _ {0} $
 +
to $  P _ {j} $.  
 +
One then obtains bilinear relations for Abelian differentials of the first and third kinds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021098.png" /></td> </tr></table>
+
$$
 +
\sum _ {k = 1 } ^ { g }  ( A _ {k} B _ {k}  ^  \prime  - B _ {k} A _ {k}  ^  \prime  )  = 2 \pi i \sum _ {j = 1 } ^ { n }
 +
c _ {j} \int\limits _ {L _ {j} } \omega _ {1} .
 +
$$
  
 
Bilinear relations of a similar type also exist between Abelian differentials of the first and second kinds.
 
Bilinear relations of a similar type also exist between Abelian differentials of the first and second kinds.
  
In addition to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021099.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210100.png" />-periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210101.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210102.png" />, known as the cyclic periods, an arbitrary Abelian differential of the third kind also has polar periods of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210103.png" /> along zero-homologous cycles which encircle the poles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210104.png" />. One thus has, for an arbitrary cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210105.png" />,
+
In addition to the $  A $-  
 +
and $  B $-
 +
periods $  A _ {k} , B _ {k} $,  
 +
$  k = 1 \dots g $,  
 +
known as the cyclic periods, an arbitrary Abelian differential of the third kind also has polar periods of the form $  2 \pi i c _ {j} $
 +
along zero-homologous cycles which encircle the poles $  P _ {j} $.  
 +
One thus has, for an arbitrary cycle $  \gamma $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210106.png" /></td> </tr></table>
+
$$
 +
\int\limits _  \gamma  \omega _ {3}  = \sum _ {k = 1 } ^ { g }
 +
( l _ {k} A _ {k} + l _ {g+k} B _ {k} ) +
 +
2 \pi i \sum _ {j = 1 } ^ { n }  m _ {j} c _ {j} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210107.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210108.png" /> are integers.
+
where $  l _ {k} , l _ {g+k} $,
 +
and $  m _ {j} $
 +
are integers.
  
Important properties of Abelian differentials are described in terms of divisors. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210109.png" /> be the divisor of the Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210110.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210111.png" /> is an expression of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210112.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210113.png" />-s are all the zeros and poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210114.png" /> and where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210115.png" />-s are their multiplicities or orders. The degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210116.png" /> of the divisor of the Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210117.png" /> depends only on the genus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210118.png" />, and one always has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210119.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210120.png" /> be some given divisor. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210121.png" /> denote the complex vector space of Abelian differentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210122.png" /> of which the divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210123.png" /> are multiples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210124.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210125.png" /> denote the vector space of meromorphic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210126.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210127.png" /> of which the divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210128.png" /> are multiples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210129.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210130.png" />. Other important information on the dimension of these spaces is contained in the Riemann–Roch theorem: The equality
+
Important properties of Abelian differentials are described in terms of divisors. Let $  ( \omega ) $
 +
be the divisor of the Abelian differential $  \omega $,  
 +
i.e. $  ( \omega ) $
 +
is an expression of the type $  ( \omega ) = P _ {1} ^ {\alpha _ {1} } {} \dots P _ {n} ^ {\alpha _ {n} } $,  
 +
where the $  P _ {j} $-
 +
s are all the zeros and poles of $  \omega $
 +
and where the $  \alpha _ {j} $-
 +
s are their multiplicities or orders. The degree $  \textrm{ d } [( \omega )] = \alpha _ {1} + \dots + \alpha _ {n} $
 +
of the divisor of the Abelian differential $  \omega $
 +
depends only on the genus of $  S $,  
 +
and one always has $  \textrm{ d } [( \omega )] = 2g - 2 $.  
 +
Let $  \mathfrak a $
 +
be some given divisor. Let $  \Omega ( \mathfrak a ) $
 +
denote the complex vector space of Abelian differentials $  \omega $
 +
of which the divisors $  ( \omega ) $
 +
are multiples of $  \mathfrak a $,  
 +
and let $  L ( \mathfrak a ) $
 +
denote the vector space of meromorphic functions $  f $
 +
on $  S $
 +
of which the divisors $  (f) $
 +
are multiples of $  \mathfrak a $.  
 +
Then $  { \mathop{\rm dim} }  \Omega ( \mathfrak a ) = { \mathop{\rm dim} }  L ( \mathfrak a / ( \omega )) $.  
 +
Other important information on the dimension of these spaces is contained in the Riemann–Roch theorem: The equality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210131.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm dim}  L ( \mathfrak a  ^ {-1} ) - \mathop{\rm dim}  \Omega ( \mathfrak a )  = \
 +
\textrm{ d } [ \mathfrak a ] - g + 1
 +
$$
  
is valid for any divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210132.png" />. It follows from the above, for example, that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210133.png" />, i.e. on the surface of a torus, a meromorphic function cannot have a single simple pole.
+
is valid for any divisor $  \mathfrak a $.  
 +
It follows from the above, for example, that if $  g = 1 $,  
 +
i.e. on the surface of a torus, a meromorphic function cannot have a single simple pole.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210134.png" /> be an arbitrary compact Riemann surface on which there are meromorphic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210135.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210136.png" /> which satisfy an irreducible algebraic equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210137.png" />. Any arbitrary Abelian differential on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210138.png" /> can then be expressed as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210139.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210140.png" /> is some rational function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210141.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210142.png" />; conversely, the expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210143.png" /> is an Abelian differential. This means that an arbitrary [[Abelian integral|Abelian integral]]
+
Let $  S $
 +
be an arbitrary compact Riemann surface on which there are meromorphic functions $  z $
 +
and $  w $
 +
which satisfy an irreducible algebraic equation $  F (z, w ) = 0 $.  
 +
Any arbitrary Abelian differential on $  S $
 +
can then be expressed as $  \omega = R (z, w )  d z $
 +
where $  R (z, w ) $
 +
is some rational function in $  z $
 +
and $  w $;  
 +
conversely, the expression $  \omega = R (z, w)  dz $
 +
is an Abelian differential. This means that an arbitrary [[Abelian integral|Abelian integral]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210144.png" /></td> </tr></table>
+
$$
 +
\int\limits R ( z, w )  dz  = \int\limits \omega
 +
$$
  
is the integral of some Abelian differential on a compact Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210145.png" />.
+
is the integral of some Abelian differential on a compact Riemann surface $  S $.
  
 
See also [[Algebraic function|Algebraic function]].
 
See also [[Algebraic function|Algebraic function]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer,   "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Nevanlinna,   "Uniformisierung" , Springer (1953) pp. Chapt.5</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. Chebotarev,   "The theory of algebraic functions" , Moscow-Leningrad (1948) pp. Chapt.3;8 (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 {{MR|0092855}} {{ZBL|0078.06602}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Nevanlinna, "Uniformisierung" , Springer (1953) pp. Chapt.5 {{MR|0057335}} {{ZBL|0053.05003}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) pp. Chapt.3;8 (In Russian)</TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
Line 92: Line 280:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lang,   "Introduction to algebraic and abelian functions" , Addison-Wesley (1972)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lang, "Introduction to algebraic and abelian functions" , Addison-Wesley (1972) {{MR|0327780}} {{ZBL|0255.14001}} </TD></TR></table>

Latest revision as of 16:08, 1 April 2020


A holomorphic or meromorphic differential on a compact, or closed, Riemann surface $ S $( cf. Differential on a Riemann surface).

Let $ g $ be the genus of the surface $ S $( cf. Genus of a surface); let $ a _ {1} b _ {1} \dots a _ {g} b _ {g} $ be the cycles of a canonical basis of the homology of $ S $. Depending on the nature of their singular points, one distinguishes three kinds of Abelian differentials: I, II and III, with proper inclusions $ I \subset II \subset III $. Abelian differentials of the first kind are first-order differentials that are holomorphic everywhere on $ S $ and that, in a neighbourhood $ U $ of each point $ P _ {0} \in S $, have the form $ \omega = p d z = p (z) d z $, where $ z = x + iy $ is a local uniformizing variable in $ U $, $ d z = d x + i dy $, and $ p (z) $ is a holomorphic, or regular, analytic function of $ z $ in $ U $. The addition of Abelian differentials and multiplication by a holomorphic function are defined by natural rules: If

$$ \omega = p dz,\ \pi = q dz,\ a = a (z), $$

then

$$ \omega + \pi = (p + q ) dz,\ a \omega = (a p ) dz. $$

The Abelian differentials of the first kind form a $ g $- dimensional vector space $ \mathfrak A $. After the introduction of the scalar product

$$ ( \omega , \pi ) = {\int\limits \int\limits } _ { S } \omega \star \overline \pi \; , $$

where $ \omega \star \overline \pi \; $ is the exterior product of $ \omega $ with the star-conjugate differential $ \overline \pi \; $, the space $ \mathfrak A $ becomes a Hilbert space.

Let $ A _ {1} , B _ {1} \dots A _ {g} , B _ {g} $ be the $ A $- and $ B $- periods of the Abelian differential of the first kind $ \omega $, i.e. the integrals

$$ A _ {j} = \int\limits _ {a _ {j} } \omega ,\ \ B _ {j} = \int\limits _ {b _ {j} } \omega ,\ \ j = 1 \dots g . $$

The following relation then holds:

$$ \tag{1 } \| \omega \| ^ {2} = i \sum _ {j = 1 } ^ { g } ( A _ {j} \overline{B}\; _ {j} - B _ {j} \overline{A}\; _ {j} ) \geq 0 . $$

If $ A _ {1} ^ \prime , B _ {1} ^ \prime \dots A _ {g} ^ \prime , B _ {g} ^ \prime $ are the periods of another Abelian differential of the first kind $ \pi $, then one has

$$ \tag{2 } i ( \omega , \overline \pi \; ) = \sum _ {j = 1 } ^ { g } ( A _ {j} B _ {j} ^ \prime - B _ {j} A _ {j} ^ \prime ) = 0 . $$

The relations (1) and (2) are known as the bilinear Riemann relations for Abelian differentials of the first kind. A canonical basis of the Abelian differentials of the first kind, i.e. a canonical basis $ \phi _ {1} \dots \phi _ {g} $ of the space $ \mathfrak A $, can be chosen so that

$$ A _ {ij } = \int\limits _ {a _ {j} } \phi _ {i} = \delta _ {ij } , $$

where $ \delta _ {ii} = 1 $ and $ \delta _ {ij} = 0 $ if $ j \neq i $. The matrix $ (B _ {ij} ) $, $ i, j = 1 \dots g $, of the $ B $- periods

$$ B _ {ij} = \int\limits _ {b _ {j} } \phi _ {i} $$

is then symmetric, and the matrix of the imaginary parts $ ( \mathop{\rm Im} B _ {ij} ) $ is positive definite. An Abelian differential of the first kind for which all the $ A $- periods or all the $ B $- periods are zero is identically equal to zero. If all the periods of an Abelian differential of the first kind $ \omega $ are real, then $ \omega = 0 $.

Abelian differentials of the second and third kinds are, in general, meromorphic differentials, i.e. analytic differentials which have on $ S $ not more than a finite set of singular points that are poles and which have local representations

$$ \tag{3 } \left ( a _ \frac{-n}{z} ^ {n} + \dots + a _ \frac{-1}{z} + f ( z ) \right ) dz, $$

where $ f(z) $ is a regular function, $ n $ is the order of the pole (if $ a _ {-n} \neq 0 $), and $ a _ {-1} $ is the residue of the pole. If $ n = 1 $, the pole is said to be simple. An Abelian differential of the second kind is a meromorphic differential all residues of which are zero, i.e. a meromorphic differential with local representation

$$ \left ( a _ \frac{-n}{z} ^ {n} + \dots + a _ \frac{-2}{z} ^ {2} + f ( z ) \right ) dz, $$

An Abelian differential of the third kind is an arbitrary Abelian differential.

Let $ \omega $ be an arbitrary Abelian differential with $ A $- periods $ A _ {1} \dots A _ {g} $; the Abelian differential $ \omega ^ \prime = \omega - A _ {1} \phi _ {1} - \dots -A _ {g} \phi _ {g} $ then has zero $ A $- periods and is known as a normalized Abelian differential. In particular, if $ P _ {1} $ and $ P _ {2} $ are any two points on $ S $, one can construct a normalized Abelian differential $ \omega _ {1,2} $ with the singularities $ (1/z) d z $ in $ P _ {1} $ and $ (-1/z) d z $ in $ P _ {2} $, which is known as a normal Abelian differential of the third kind. Let $ \omega $ be an arbitrary Abelian differential with residues $ c _ {1} \dots c _ {n} $ at the respective points $ P _ {1} \dots P _ {n} $; then, always, $ c _ {1} + \dots + c _ {n} = 0 $. If $ P _ {0} $ is any arbitrary point on $ S $ such that $ P _ {0} \neq P _ {j} $, $ j = 1 \dots n $, then $ \omega $ can be represented as a linear combination of a normalized Abelian differential of the second kind $ \omega _ {2} $, a finite number of normal Abelian differentials of the third kind $ \omega _ {j,0} $, and basis Abelian differentials of the first kind $ \phi _ {k} $:

$$ \omega = \omega _ {2} + \sum _ {j=1 } ^ { n } c _ {j} \omega _ {j,0} + \sum _ {k= 1 } ^ { g } A _ {k} \phi _ {k} . $$

Let $ \omega _ {3} $ be an Abelian differential of the third kind with only simple poles with residues $ c _ {j} $ at the points $ P _ {j} $, $ j = 1 \dots n $, and let $ \omega _ {1} $ be an arbitrary Abelian differential of the first kind:

$$ A _ {k} = \int\limits _ {a _ {k} } \omega _ {1} ,\ \ B _ {k} = \int\limits _ {b _ {k} } \omega _ {1} , $$

$$ A _ {k} ^ \prime = \int\limits _ {a _ {k} } \omega _ {3} ,\ \ B _ {k} ^ \prime = \int\limits _ {b _ {k} } \omega _ {3} ,\ k = 1 \dots g, $$

where the cycles $ a _ {k} , b _ {k} $ do not pass through the poles of $ \omega _ {3} $. Let the point $ P _ {0} \in S $ not lie on the cycles $ a _ {k} , b _ {k} $ and let $ L _ {j} $ be a path from $ P _ {0} $ to $ P _ {j} $. One then obtains bilinear relations for Abelian differentials of the first and third kinds:

$$ \sum _ {k = 1 } ^ { g } ( A _ {k} B _ {k} ^ \prime - B _ {k} A _ {k} ^ \prime ) = 2 \pi i \sum _ {j = 1 } ^ { n } c _ {j} \int\limits _ {L _ {j} } \omega _ {1} . $$

Bilinear relations of a similar type also exist between Abelian differentials of the first and second kinds.

In addition to the $ A $- and $ B $- periods $ A _ {k} , B _ {k} $, $ k = 1 \dots g $, known as the cyclic periods, an arbitrary Abelian differential of the third kind also has polar periods of the form $ 2 \pi i c _ {j} $ along zero-homologous cycles which encircle the poles $ P _ {j} $. One thus has, for an arbitrary cycle $ \gamma $,

$$ \int\limits _ \gamma \omega _ {3} = \sum _ {k = 1 } ^ { g } ( l _ {k} A _ {k} + l _ {g+k} B _ {k} ) + 2 \pi i \sum _ {j = 1 } ^ { n } m _ {j} c _ {j} , $$

where $ l _ {k} , l _ {g+k} $, and $ m _ {j} $ are integers.

Important properties of Abelian differentials are described in terms of divisors. Let $ ( \omega ) $ be the divisor of the Abelian differential $ \omega $, i.e. $ ( \omega ) $ is an expression of the type $ ( \omega ) = P _ {1} ^ {\alpha _ {1} } {} \dots P _ {n} ^ {\alpha _ {n} } $, where the $ P _ {j} $- s are all the zeros and poles of $ \omega $ and where the $ \alpha _ {j} $- s are their multiplicities or orders. The degree $ \textrm{ d } [( \omega )] = \alpha _ {1} + \dots + \alpha _ {n} $ of the divisor of the Abelian differential $ \omega $ depends only on the genus of $ S $, and one always has $ \textrm{ d } [( \omega )] = 2g - 2 $. Let $ \mathfrak a $ be some given divisor. Let $ \Omega ( \mathfrak a ) $ denote the complex vector space of Abelian differentials $ \omega $ of which the divisors $ ( \omega ) $ are multiples of $ \mathfrak a $, and let $ L ( \mathfrak a ) $ denote the vector space of meromorphic functions $ f $ on $ S $ of which the divisors $ (f) $ are multiples of $ \mathfrak a $. Then $ { \mathop{\rm dim} } \Omega ( \mathfrak a ) = { \mathop{\rm dim} } L ( \mathfrak a / ( \omega )) $. Other important information on the dimension of these spaces is contained in the Riemann–Roch theorem: The equality

$$ \mathop{\rm dim} L ( \mathfrak a ^ {-1} ) - \mathop{\rm dim} \Omega ( \mathfrak a ) = \ \textrm{ d } [ \mathfrak a ] - g + 1 $$

is valid for any divisor $ \mathfrak a $. It follows from the above, for example, that if $ g = 1 $, i.e. on the surface of a torus, a meromorphic function cannot have a single simple pole.

Let $ S $ be an arbitrary compact Riemann surface on which there are meromorphic functions $ z $ and $ w $ which satisfy an irreducible algebraic equation $ F (z, w ) = 0 $. Any arbitrary Abelian differential on $ S $ can then be expressed as $ \omega = R (z, w ) d z $ where $ R (z, w ) $ is some rational function in $ z $ and $ w $; conversely, the expression $ \omega = R (z, w) dz $ is an Abelian differential. This means that an arbitrary Abelian integral

$$ \int\limits R ( z, w ) dz = \int\limits \omega $$

is the integral of some Abelian differential on a compact Riemann surface $ S $.

See also Algebraic function.

References

[1] G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 MR0092855 Zbl 0078.06602
[2] R. Nevanlinna, "Uniformisierung" , Springer (1953) pp. Chapt.5 MR0057335 Zbl 0053.05003
[3] N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) pp. Chapt.3;8 (In Russian)

Comments

Another good reference, replacing [3], is [a1].

References

[a1] S. Lang, "Introduction to algebraic and abelian functions" , Addison-Wesley (1972) MR0327780 Zbl 0255.14001
How to Cite This Entry:
Abelian differential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abelian_differential&oldid=17348
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article