Namespaces
Variants
Actions

Abel inequality

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An estimate for the sum of products of two numbers. If sets of numbers $(a_k)$ and $(b_k)$ are given such that the absolute values of all sums $B_k = b_1 + \cdots + b_k$, $k=1,\ldots,n$, are bounded by a number $B$, i.e. $|B_k| \le B$, and if either $a_i \ge a_{i+1}$ or $a_i \le a_{i+1}$, $i = 1,2,\ldots,n-1$, then $$ \left\vert{ \sum_{k=1}^n a_k b_k }\right\vert \le B(|a_1| + 2|a_n|) $$

If the $a_k$ are non-increasing and non-negative, one has the simpler estimate: $$ \left\vert{ \sum_{k=1}^n a_k b_k }\right\vert \le B a_1 \ . $$


Abel's inequality is proved by means of the Abel transformation.

How to Cite This Entry:
Abel inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abel_inequality&oldid=34411
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article