Difference between revisions of "Weyl connection"
m (→References:  zbl link)  | 
				 (eqref)  | 
				||
| Line 18: | Line 18: | ||
is given by the matrix of local connection forms  | is given by the matrix of local connection forms  | ||
| − | + | \begin{equation} \label{eq1}  | |
\left . \begin{array}{rcl}  | \left . \begin{array}{rcl}  | ||
\omega^i &=& \Gamma^i_k (x) dx^k\,,\ \ \det|\Gamma^i_k| \ne 0 \\  | \omega^i &=& \Gamma^i_k (x) dx^k\,,\ \ \det|\Gamma^i_k| \ne 0 \\  | ||
| Line 24: | Line 24: | ||
\end{array}  | \end{array}  | ||
\right\rbrace  | \right\rbrace  | ||
| − | + | \end{equation}  | |
and  $  ds  ^ {2} = g _ {ij} \omega  ^ {i} \omega  ^ {j} $,    | and  $  ds  ^ {2} = g _ {ij} \omega  ^ {i} \omega  ^ {j} $,    | ||
it will be a Weyl connection if and only if  | it will be a Weyl connection if and only if  | ||
| − | + | \begin{equation} \label{eq2}  | |
dg _ {ij}  =  g _ {kj} \omega _ {i}  ^ {k} +  | dg _ {ij}  =  g _ {kj} \omega _ {i}  ^ {k} +  | ||
g _ {ik} \omega _ {j}  ^ {k} + \theta g _ {ij} .  | g _ {ik} \omega _ {j}  ^ {k} + \theta g _ {ij} .  | ||
| − | + | \end{equation}  | |
Another, equivalent, form of this condition is:  | Another, equivalent, form of this condition is:  | ||
| Line 60: | Line 60: | ||
i.e. any torsion-free affine connection whose [[Holonomy group|holonomy group]] is the group of similitudes or one of its subgroups is a Weyl connection for some Riemannian metric on  $  M $.  | i.e. any torsion-free affine connection whose [[Holonomy group|holonomy group]] is the group of similitudes or one of its subgroups is a Weyl connection for some Riemannian metric on  $  M $.  | ||
| − | If in   | + | If in \eqref{eq1}  $  \omega  ^ {i} = dx  ^ {i} $,    | 
then for a Weyl connection  | then for a Weyl connection  | ||
Latest revision as of 05:46, 11 April 2024
A torsion-free affine connection on a Riemannian space  $  M $
which is a generalization of the Levi-Civita connection in the sense that the corresponding covariant differential of the metric tensor  $  g _ {ij} $
of  $  M $
is not necessarily equal to zero, but is proportional to  $  g _ {ij} $. 
If the affine connection on  $  M $
is given by the matrix of local connection forms
\begin{equation} \label{eq1} \left . \begin{array}{rcl} \omega^i &=& \Gamma^i_k (x) dx^k\,,\ \ \det|\Gamma^i_k| \ne 0 \\ \omega^i_j &=& \Gamma^i_{jk} \omega^k \end{array} \right\rbrace \end{equation}
and $ ds ^ {2} = g _ {ij} \omega ^ {i} \omega ^ {j} $, it will be a Weyl connection if and only if
\begin{equation} \label{eq2} dg _ {ij} = g _ {kj} \omega _ {i} ^ {k} + g _ {ik} \omega _ {j} ^ {k} + \theta g _ {ij} . \end{equation}
Another, equivalent, form of this condition is:
$$ Z \langle X, Y \rangle = \langle \nabla _ {Z} X, Y \rangle + \langle X, \nabla _ {Z} Y \rangle + \theta ( Z) \langle X, Y\rangle , $$
where $ \nabla _ {Z} X $, the covariant derivative of $ X $ with respect to $ Z $, is defined by the formula
$$ \omega ^ {i} ( \nabla _ {Z} X) = \ Z \omega ^ {i} ( X) + \omega _ {k} ^ {i} ( Z) \omega ^ {k} ( X). $$
With respect to a local field of orthonormal coordinates, where $ g _ {ij} = \delta _ {ij} $, the following equation is valid:
$$ \omega _ {i} ^ {j} + \omega _ {j} ^ {i} + \delta _ {j} ^ {i} \theta = 0, $$
i.e. any torsion-free affine connection whose holonomy group is the group of similitudes or one of its subgroups is a Weyl connection for some Riemannian metric on $ M $.
If in \eqref{eq1} $ \omega ^ {i} = dx ^ {i} $, then for a Weyl connection
$$ \Gamma _ {jk} ^ {i} = \frac{1}{2} g ^ {il} \left ( \frac{\partial g _ {lj} }{\partial x ^ {k} } + \frac{\partial g _ {lk} }{\partial x ^ {j} } - \frac{\partial g _ {jk} }{\partial x ^ {l} } \right ) - \frac{1}{2} g ^ {il} g _ {jk} \theta _ {l} + $$
$$ + \frac{1}{2} ( \delta _ {j} ^ {i} \phi _ {k} + \delta _ {k} ^ {i} \phi _ {j} ) , $$
where $ \theta = \theta _ {k} dx ^ {k} $. Since
$$ g _ {kj} \Omega _ {i} ^ {k} + g _ {ik} \Omega _ {j} ^ {k} + g _ {ij} d \theta = 0, $$
the tensor
$$ F _ {ij,kl} = \ g _ {im} R _ {jkl} ^ {m} + \frac{1}{2} g _ {ij} ( \nabla _ {k} \theta _ {l} - \nabla _ {l} \theta _ {k} ) , $$
called the directional curvature tensor by H. Weyl, is anti-symmetric with respect to both pairs of indices:
$$ F _ {ij,kl} + F _ {ji,kl} = 0 . $$
Weyl connections were introduced by Weyl [1].
References
| [1] | H. Weyl, "Reine Infinitesimalgeometrie" Math. Z. , 2 (1918) pp. 384–411 | 
| [2] | A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian) Zbl 0925.53007 | 
| [3] | G.B. Folland, "Weyl manifolds" J. Differential Geom. , 4 (1970) pp. 145–153 | 
Weyl connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weyl_connection&oldid=55707