Namespaces
Variants
Actions

Difference between revisions of "Measure of irrationality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
''of a real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632601.png" />''
+
{{TEX|done}}
 +
''of a real number $\xi$''
  
 
The function
 
The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632602.png" /></td> </tr></table>
+
$$L(\xi,H)=\min|h_1\xi+h_0|,$$
  
where the minimum is over all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632603.png" /> of integral rational numbers such that
+
where the minimum is over all pairs $h_0,h_1$ of integral rational numbers such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632604.png" /></td> </tr></table>
+
$$|h_0|,|h_1|\leq H,\quad |h_0|+|h_1|\neq0.$$
  
The concept of the measure of irrationality is a particular case of those of the measure of linear independence and the measure of transcendency (cf. [[Linear independence, measure of|Linear independence, measure of]]; [[Transcendency, measure of|Transcendency, measure of]]). The measure of irrationality indicates how  "well"  the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632605.png" /> can be approximated by rational numbers. For all real irrational numbers one has
+
The concept of the measure of irrationality is a particular case of those of the measure of linear independence and the measure of transcendency (cf. [[Linear independence, measure of|Linear independence, measure of]]; [[Transcendency, measure of|Transcendency, measure of]]). The measure of irrationality indicates how  "well"  the number $\xi$ can be approximated by rational numbers. For all real irrational numbers one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632606.png" /></td> </tr></table>
+
$$L(\xi,H)<\frac1{\sqrt5}\frac1H,$$
  
but for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632607.png" /> and almost-all (in the sense of the Lebesgue measure) real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632608.png" />,
+
but for any $\epsilon>0$ and almost-all (in the sense of the Lebesgue measure) real numbers $\xi$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m0632609.png" /></td> </tr></table>
+
$$L(\xi,H)>\frac{C}{H^{1+\epsilon}},$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326010.png" />. However, for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326011.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326012.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326014.png" />, there exists a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326015.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326016.png" />,
+
where $C=C(\epsilon,\xi)>0$. However, for any function $\phi$ with $\phi(H)\to0$ as $H\to\infty$ and $\phi(H)>0$, there exists a number $\xi_\phi$ such that for all $H\geq1$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063260/m06326017.png" /></td> </tr></table>
+
$$0<L(\xi_\phi,H)<\phi(H).$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.Ya. Khinchin,  "Continued fractions" , Univ. Chicago Press  (1964)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.Ya. Khinchin,  "Continued fractions" , Univ. Chicago Press  (1964)  (Translated from Russian)</TD></TR></table>

Revision as of 14:47, 2 August 2014

of a real number $\xi$

The function

$$L(\xi,H)=\min|h_1\xi+h_0|,$$

where the minimum is over all pairs $h_0,h_1$ of integral rational numbers such that

$$|h_0|,|h_1|\leq H,\quad |h_0|+|h_1|\neq0.$$

The concept of the measure of irrationality is a particular case of those of the measure of linear independence and the measure of transcendency (cf. Linear independence, measure of; Transcendency, measure of). The measure of irrationality indicates how "well" the number $\xi$ can be approximated by rational numbers. For all real irrational numbers one has

$$L(\xi,H)<\frac1{\sqrt5}\frac1H,$$

but for any $\epsilon>0$ and almost-all (in the sense of the Lebesgue measure) real numbers $\xi$,

$$L(\xi,H)>\frac{C}{H^{1+\epsilon}},$$

where $C=C(\epsilon,\xi)>0$. However, for any function $\phi$ with $\phi(H)\to0$ as $H\to\infty$ and $\phi(H)>0$, there exists a number $\xi_\phi$ such that for all $H\geq1$,

$$0<L(\xi_\phi,H)<\phi(H).$$

References

[1] A.Ya. Khinchin, "Continued fractions" , Univ. Chicago Press (1964) (Translated from Russian)
How to Cite This Entry:
Measure of irrationality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Measure_of_irrationality&oldid=32680
This article was adapted from an original article by A.I. Galochkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article