Namespaces
Variants
Actions

Difference between revisions of "Field operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎References: latexify)
m (latex details)
 
(One intermediate revision by the same user not shown)
Line 30: Line 30:
  
 
$$ \tag{* }
 
$$ \tag{* }
U _ {g} \phi _ {f} U _ {g}  ^ {-} 1 = \  
+
U _ {g} \phi _ {f} U _ {g}  ^ {-1}  = \  
 
\phi _ {\tau _ {g}  f } ,\ \  
 
\phi _ {\tau _ {g}  f } ,\ \  
 
g \in G,\ \  
 
g \in G,\ \  
Line 40: Line 40:
 
$$  
 
$$  
 
( \tau _ {g} f  ) ( x)  = \  
 
( \tau _ {g} f  ) ( x)  = \  
T _ {g} f ( g  ^ {-} 1 x),\ \  
+
T _ {g} f ( g  ^ {-1} x),\ \  
 
x \in \mathbf R  ^ {4} .
 
x \in \mathbf R  ^ {4} .
 
$$
 
$$
Line 54: Line 54:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Jost,  "The general theory of quantized fields" , Amer. Math. Soc.  (1965)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B. Simon,  "The $P(\varphi)_2$-Euclidean (quantum) field theory" , Princeton Univ. Press  (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.N. Bogolyubov,  D.V. Shirkov,  "Introduction to the theory of quantized fields" , Interscience  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Euclidean quantum field theory. The Markov approach'' , Moscow  (1978)  (In Russian; translated from English)</TD></TR>
+
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top">  P.J.M. Bongaarts,  "The mathematical structure of free quantum fields. Gaussian fields"  E.A. de Kerf (ed.)  H.G.J. Pijls (ed.) , ''Proc. Seminar. Mathematical structures in field theory'' , CWI, Amsterdam  (1987)  pp. 1–50</TD></TR></table>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  R. Jost,  "The general theory of quantized fields" , Amer. Math. Soc.  (1965)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B. Simon,  "The $P(\varphi)_2$-Euclidean (quantum) field theory" , Princeton Univ. Press  (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.N. Bogolyubov,  D.V. Shirkov,  "Introduction to the theory of quantized fields" , Interscience  (1959)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Euclidean quantum field theory. The Markov approach'' , Moscow  (1978)  (In Russian; translated from English)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  P.J.M. Bongaarts,  "The mathematical structure of free quantum fields. Gaussian fields"  E.A. de Kerf (ed.)  H.G.J. Pijls (ed.) , ''Proc. Seminar. Mathematical structures in field theory'' , CWI, Amsterdam  (1987)  pp. 1–50</TD></TR>
 +
</table>

Latest revision as of 20:27, 16 January 2024


A linear weakly-continuous mapping $ f \rightarrow \phi _ {f} $, $ f \in D ^ {L} ( \mathbf R ^ {4} ) $, of the space $ D ^ {L} ( \mathbf R ^ {4} ) $ of basic functions $ f ( x) $, $ x \in \mathbf R ^ {4} $, that take values in a finite-dimensional vector space $ L $, to the set of operators (generally speaking, unbounded) defined on a dense linear manifold $ D _ {0} \in H $ of some Hilbert space $ H $. Here it is assumed that both in $ L $ and in $ H $ certain representations $ g \rightarrow T _ {g} $( in $ L $) and $ g \rightarrow U _ {g} $( in $ H $), $ g \in G $, of the inhomogeneous Lorentz group $ G $ act in such a way that the equation

$$ \tag{* } U _ {g} \phi _ {f} U _ {g} ^ {-1} = \ \phi _ {\tau _ {g} f } ,\ \ g \in G,\ \ f \in D ^ {L} ( \mathbf R ^ {4} ), $$

holds, where

$$ ( \tau _ {g} f ) ( x) = \ T _ {g} f ( g ^ {-1} x),\ \ x \in \mathbf R ^ {4} . $$

Depending on the representation (scalar, vector, spinor, etc.) in $ L $, the field $ \{ {\phi _ {f} } : {f \in D ^ {L} ( \mathbf R ^ {4} ) } \} $ is called, respectively, scalar, vector or spinor. A family of field operators $ \{ {\phi _ {f} } : {f \in D ^ {L} ( \mathbf R ^ {4} ) } \} $ together with representations $ \{ {T _ {g} } : {g \in G } \} $ and $ \{ {U _ {g} } : {g \in G } \} $ for which condition (*) holds together with several general conditions (see [1]) is called a quantum (or quantized) field.

Aside from some models referring to the two-dimensional or three-dimensional world (see [2], [4]), one has constructed only (1983) simple examples of so-called free quantum fields [3].

References

[1] R. Jost, "The general theory of quantized fields" , Amer. Math. Soc. (1965)
[2] B. Simon, "The $P(\varphi)_2$-Euclidean (quantum) field theory" , Princeton Univ. Press (1974)
[3] N.N. Bogolyubov, D.V. Shirkov, "Introduction to the theory of quantized fields" , Interscience (1959) (Translated from Russian)
[4] , Euclidean quantum field theory. The Markov approach , Moscow (1978) (In Russian; translated from English)
[a1] P.J.M. Bongaarts, "The mathematical structure of free quantum fields. Gaussian fields" E.A. de Kerf (ed.) H.G.J. Pijls (ed.) , Proc. Seminar. Mathematical structures in field theory , CWI, Amsterdam (1987) pp. 1–50
How to Cite This Entry:
Field operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Field_operator&oldid=53459
This article was adapted from an original article by R.A. Minlos (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article