Namespaces
Variants
Actions

Difference between revisions of "Levi condition"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A condition, which can be effectively verified, for pseudo-convexity in the sense of Levi of domains in the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582401.png" />. It was proposed by E.E. Levi
+
<!--
 +
l0582401.png
 +
$#A+1 = 41 n = 0
 +
$#C+1 = 41 : ~/encyclopedia/old_files/data/L058/L.0508240 Levi condition
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
and consists of the following. Suppose that a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582402.png" /> is specified in a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582403.png" /> of a boundary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582404.png" /> by the condition
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582405.png" /></td> </tr></table>
+
A condition, which can be effectively verified, for pseudo-convexity in the sense of Levi of domains in the complex space  $  \mathbf C  ^ {n} $.  
 +
It was proposed by E.E. Levi
  
where the real function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582406.png" /> belongs to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582407.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582408.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582409.png" /> is Levi pseudo-convex at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824010.png" />, then the (complex) Hessian
+
and consists of the following. Suppose that a domain  $  D $
 +
is specified in a neighbourhood  $  U _  \zeta  $
 +
of a boundary point  $  \zeta \in \partial  D $
 +
by the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$
 +
D \cap U _  \zeta  = \{ {z = ( z _ {1} \dots z _ {n} ) \in U _  \zeta  } : {\phi ( z) = \phi ( z , \overline{z}\; ) < 0 } \}
 +
,
 +
$$
  
is non-negative for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824012.png" /> that are complex orthogonal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824013.png" />, that is, are such that
+
where the real function  $  \phi $
 +
belongs to the class  $  C  ^ {2} ( U _  \zeta  ) $
 +
and  $  \mathop{\rm grad}  \phi ( \zeta ) \neq 0 $.  
 +
If  $  D $
 +
is Levi pseudo-convex at  $  \zeta $,  
 +
then the (complex) Hessian
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{1 }
 +
H ( \zeta ;  \phi ) ( a , \overline{a}\; = \sum _ {j , k = 1 } ^ { n } 
 +
\frac{\partial
 +
^ {2} \phi }{\partial  z _ {j} \partial  {\overline{z}\; } _ {k} }
 +
( \zeta ) a _ {j} {\overline{a}\; } _ {k}  \geq  0
 +
$$
 +
 
 +
is non-negative for all  $  a = ( a _ {1} \dots a _ {n} ) \in \mathbf C  ^ {n} $
 +
that are complex orthogonal to  $  \mathop{\rm grad}  \phi ( \zeta ) $,
 +
that is, are such that
 +
 
 +
$$ \tag{2 }
 +
\sum_{k=1}^n \frac{\partial  \phi }{\partial  z _ {k} }
 +
( \zeta ) a _ {k}  =  0 .
 +
$$
  
 
Conversely, if the condition
 
Conversely, if the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
H ( \zeta ; \phi ) ( a , \overline{a}\; > 0
 +
$$
 +
 
 +
is satisfied at the point  $  \zeta \in \partial  D $
 +
for all  $  a \neq 0 $
 +
satisfying (2), then  $  D $
 +
is Levi pseudo-convex at  $  \zeta $.
  
is satisfied at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824016.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824017.png" /> satisfying (2), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824018.png" /> is Levi pseudo-convex at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824019.png" />.
+
For  $  n = 2 $
 +
the inequalities (1) and (3) given above can be replaced by the simpler equivalent inequalities  $  L ( \phi ) ( \zeta ) \geq  0 $
 +
and  $  L ( \phi ) ( \zeta ) > 0 $,
 +
respectively, where
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824020.png" /> the inequalities (1) and (3) given above can be replaced by the simpler equivalent inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824022.png" />, respectively, where
+
$$
 +
L ( \phi ) = - \left |
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824023.png" /></td> </tr></table>
+
\begin{array}{ccc}
 +
0 &
 +
\frac{\partial  \phi }{\partial  z _ {1} }
 +
  &
 +
\frac{\partial  \phi }{\partial  z _ {2} }
 +
  \\
  
is the determinant of the Levi function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824024.png" />.
+
\frac{\partial  \phi }{\partial  {\overline{z}\; } _ {1} }
 +
  &
 +
\frac{\partial  ^ {2} \phi }{\partial  z _ {1} \partial  {\overline{z}\; } _ {1} }
 +
  &
 +
\frac{\partial  ^ {2} \phi }{\partial  {\overline{z}\; } _ {1} {\partial  z _ {2} } }
 +
  \\
 +
 
 +
\frac{\partial
 +
\phi }{\partial  {\overline{z}\; } _ {2} }
 +
  &
 +
\frac{\partial  ^ {2} \phi }{\partial  z _ {1} \partial  {\overline{z}\; } _ {2} }
 +
  &
 +
\frac{\partial  ^ {2} \phi }{\partial  z _ {2} \partial  \overline{ {z }}\; _ {2} }
 +
  \\
 +
\end{array}
 +
\right |
 +
$$
 +
 
 +
is the determinant of the Levi function $  \phi ( z) $.
  
 
The Levi condition (1)–(3) has also been generalized to domains on complex manifolds (see [[#References|[4]]]).
 
The Levi condition (1)–(3) has also been generalized to domains on complex manifolds (see [[#References|[4]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E.E. Levi,  "Studii sui punti singolari essenziali delle funzioni analiticke de due o più variabili complesse"  ''Ann. Mat. Pura Appl.'' , '''17'''  (1910)  pp. 61–87</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E.E. Levi,  "Sulle ipersurficie dello spazio a 4 dimensione che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse"  ''Ann. Mat. Pura Appl.'' , '''18'''  (1911)  pp. 69–79</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of several complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.C. Gunning,  H. Rossi,  "Analytic functions of several complex variables" , Prentice-Hall  (1965)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1a]</TD> <TD valign="top">  E.E. Levi,  "Studii sui punti singolari essenziali delle funzioni analiticke de due o più variabili complesse"  ''Ann. Mat. Pura Appl.'' , '''17'''  (1910)  pp. 61–87</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E.E. Levi,  "Sulle ipersurficie dello spazio a 4 dimensione che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse"  ''Ann. Mat. Pura Appl.'' , '''18'''  (1911)  pp. 69–79</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of several complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.C. Gunning,  H. Rossi,  "Analytic functions of several complex variables" , Prentice-Hall  (1965)</TD></TR>
 
+
</table>
  
 
====Comments====
 
====Comments====
By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824025.png" /> is Levi pseudo-convex at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824026.png" /> if (1) is satisfied for vectors that satisfy (2); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824027.png" /> is called strictly (Levi) pseudo-convex at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824028.png" /> if (3) is satisfied for vectors that satisfy (2).
+
By definition, $  D $
 +
is Levi pseudo-convex at $  \zeta $
 +
if (1) is satisfied for vectors that satisfy (2); $  D $
 +
is called strictly (Levi) pseudo-convex at $  \zeta $
 +
if (3) is satisfied for vectors that satisfy (2).
  
The domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824029.png" /> is called (Levi) pseudo-convex if it is Levi pseudo-convex at every boundary point.
+
The domain $  D $
 +
is called (Levi) pseudo-convex if it is Levi pseudo-convex at every boundary point.
  
For domains with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824030.png" /> boundary, Levi pseudo-convexity is equivalent with any of the following:
+
For domains with $  C  ^ {2} $
 +
boundary, Levi pseudo-convexity is equivalent with any of the following:
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824031.png" /> is plurisubharmonic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824032.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824033.png" /> is Hartogs pseudo-convex), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824034.png" /> denotes the Euclidean distance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824035.png" /> to the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824036.png" />.
+
a) $  \mathop{\rm log}  d ( z) $
 +
is plurisubharmonic on $  D $(
 +
i.e. $  D $
 +
is Hartogs pseudo-convex), where $  d ( z) $
 +
denotes the Euclidean distance of $  z $
 +
to the boundary of $  D $.
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824037.png" /> relatively compact in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824038.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824039.png" /> relatively compact in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824040.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l05824041.png" />.
+
b) $  K $
 +
relatively compact in $  D $
 +
implies $  \widehat{K}  $
 +
relatively compact in $  D $,  
 +
where $  \widehat{K}  = \{ {z \in D } : {p ( z) \leq  \sup _ {z \in K }  p( z)  \textrm{ for  every  plurisubharmonic  function  }  p    \mathop{\rm on}  D } \} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.G. Krantz,  "Function theory of several complex variables" , Wiley  (1982)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.G. Krantz,  "Function theory of several complex variables" , Wiley  (1982)</TD></TR></table>

Latest revision as of 19:44, 12 January 2024


A condition, which can be effectively verified, for pseudo-convexity in the sense of Levi of domains in the complex space $ \mathbf C ^ {n} $. It was proposed by E.E. Levi

and consists of the following. Suppose that a domain $ D $ is specified in a neighbourhood $ U _ \zeta $ of a boundary point $ \zeta \in \partial D $ by the condition

$$ D \cap U _ \zeta = \{ {z = ( z _ {1} \dots z _ {n} ) \in U _ \zeta } : {\phi ( z) = \phi ( z , \overline{z}\; ) < 0 } \} , $$

where the real function $ \phi $ belongs to the class $ C ^ {2} ( U _ \zeta ) $ and $ \mathop{\rm grad} \phi ( \zeta ) \neq 0 $. If $ D $ is Levi pseudo-convex at $ \zeta $, then the (complex) Hessian

$$ \tag{1 } H ( \zeta ; \phi ) ( a , \overline{a}\; ) = \sum _ {j , k = 1 } ^ { n } \frac{\partial ^ {2} \phi }{\partial z _ {j} \partial {\overline{z}\; } _ {k} } ( \zeta ) a _ {j} {\overline{a}\; } _ {k} \geq 0 $$

is non-negative for all $ a = ( a _ {1} \dots a _ {n} ) \in \mathbf C ^ {n} $ that are complex orthogonal to $ \mathop{\rm grad} \phi ( \zeta ) $, that is, are such that

$$ \tag{2 } \sum_{k=1}^n \frac{\partial \phi }{\partial z _ {k} } ( \zeta ) a _ {k} = 0 . $$

Conversely, if the condition

$$ \tag{3 } H ( \zeta ; \phi ) ( a , \overline{a}\; ) > 0 $$

is satisfied at the point $ \zeta \in \partial D $ for all $ a \neq 0 $ satisfying (2), then $ D $ is Levi pseudo-convex at $ \zeta $.

For $ n = 2 $ the inequalities (1) and (3) given above can be replaced by the simpler equivalent inequalities $ L ( \phi ) ( \zeta ) \geq 0 $ and $ L ( \phi ) ( \zeta ) > 0 $, respectively, where

$$ L ( \phi ) = - \left | \begin{array}{ccc} 0 & \frac{\partial \phi }{\partial z _ {1} } & \frac{\partial \phi }{\partial z _ {2} } \\ \frac{\partial \phi }{\partial {\overline{z}\; } _ {1} } & \frac{\partial ^ {2} \phi }{\partial z _ {1} \partial {\overline{z}\; } _ {1} } & \frac{\partial ^ {2} \phi }{\partial {\overline{z}\; } _ {1} {\partial z _ {2} } } \\ \frac{\partial \phi }{\partial {\overline{z}\; } _ {2} } & \frac{\partial ^ {2} \phi }{\partial z _ {1} \partial {\overline{z}\; } _ {2} } & \frac{\partial ^ {2} \phi }{\partial z _ {2} \partial \overline{ {z }}\; _ {2} } \\ \end{array} \right | $$

is the determinant of the Levi function $ \phi ( z) $.

The Levi condition (1)–(3) has also been generalized to domains on complex manifolds (see [4]).

References

[1a] E.E. Levi, "Studii sui punti singolari essenziali delle funzioni analiticke de due o più variabili complesse" Ann. Mat. Pura Appl. , 17 (1910) pp. 61–87
[1b] E.E. Levi, "Sulle ipersurficie dello spazio a 4 dimensione che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse" Ann. Mat. Pura Appl. , 18 (1911) pp. 69–79
[2] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)
[3] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian)
[4] R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965)

Comments

By definition, $ D $ is Levi pseudo-convex at $ \zeta $ if (1) is satisfied for vectors that satisfy (2); $ D $ is called strictly (Levi) pseudo-convex at $ \zeta $ if (3) is satisfied for vectors that satisfy (2).

The domain $ D $ is called (Levi) pseudo-convex if it is Levi pseudo-convex at every boundary point.

For domains with $ C ^ {2} $ boundary, Levi pseudo-convexity is equivalent with any of the following:

a) $ \mathop{\rm log} d ( z) $ is plurisubharmonic on $ D $( i.e. $ D $ is Hartogs pseudo-convex), where $ d ( z) $ denotes the Euclidean distance of $ z $ to the boundary of $ D $.

b) $ K $ relatively compact in $ D $ implies $ \widehat{K} $ relatively compact in $ D $, where $ \widehat{K} = \{ {z \in D } : {p ( z) \leq \sup _ {z \in K } p( z) \textrm{ for every plurisubharmonic function } p \mathop{\rm on} D } \} $.

References

[a1] S.G. Krantz, "Function theory of several complex variables" , Wiley (1982)
How to Cite This Entry:
Levi condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Levi_condition&oldid=16264
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article