Namespaces
Variants
Actions

Difference between revisions of "Cascade method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0206801.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/C020/C.0200680 Cascade method,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Laplace method''
 
''Laplace method''
  
 
A method in the theory of partial differential equations enabling one, in some cases, to find the general solution of a linear partial differential equation of hyperbolic type,
 
A method in the theory of partial differential equations enabling one, in some cases, to find the general solution of a linear partial differential equation of hyperbolic type,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206801.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
Lu  \equiv \
 +
u _ {xy} +
 +
a (x, y)
 +
u _ {x} +
 +
b (x, y)
 +
u _ {y} +
 +
c (x, y)
 +
u =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206802.png" /></td> </tr></table>
+
$$
 +
= \
 +
f (x, y),
 +
$$
  
 
by constructing a sequence of equations
 
by constructing a sequence of equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206803.png" /></td> </tr></table>
+
$$
 +
L _ {i} u  \equiv \
 +
u _ {xy} +
 +
a _ {i} (x, y)
 +
u _ {x} +
 +
b _ {i} (x, y)
 +
u _ {y} +
 +
c _ {i} (x, y)
 +
= \  ( 2 _ {i} )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206804.png" /></td> </tr></table>
+
$$
 +
= f _ {i} (x, y) ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206805.png" /> such that the solution of (1) is expressed in terms of the solutions of the latter.
+
$  i = \pm  1, \pm  2 \dots $
 +
such that the solution of (1) is expressed in terms of the solutions of the latter.
  
 
Equation (1) can be written in one of the following forms:
 
Equation (1) can be written in one of the following forms:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206806.png" /></td> </tr></table>
+
$$
 +
v _ {x} + bv - hu  = f,\ \
 +
w _ {y} + aw - ku  = f,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206807.png" /></td> </tr></table>
+
$$
 +
= a _ {x} + ab - c,\ \
 +
= b _ {y} + ab - c,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206808.png" /></td> </tr></table>
+
$$
 +
= u _ {y} + au,\  w  = u _ {x} + bu.
 +
$$
  
The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206809.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068010.png" /> are called invariants of (1).
+
The functions $  h $
 +
and $  k $
 +
are called invariants of (1).
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068011.png" />, solving (1) reduces to the integration of ordinary differential equations, and its solution has the form:
+
When $  h = 0 $,  
 +
solving (1) reduces to the integration of ordinary differential equations, and its solution has the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068012.png" /></td> </tr></table>
+
$$
 +
= e ^
 +
{- \int\limits a  dy }
 +
\left [
 +
X + \int\limits
 +
\left \{
 +
Y + \int\limits
 +
fe ^ {\int\limits b  dx } \
 +
dx \right \}
 +
e ^ {\int\limits a  dy - b  dx } \
 +
dy \right ] ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068014.png" /> are arbitrary functions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068016.png" />, respectively. Similarly, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068017.png" />, the solution of (1) can be written in the form
+
where $  X $
 +
and $  Y $
 +
are arbitrary functions of $  x $
 +
and $  y $,  
 +
respectively. Similarly, if $  k = 0 $,  
 +
the solution of (1) can be written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068018.png" /></td> </tr></table>
+
$$
 +
= e ^
 +
{- \int\limits b  dx }
 +
\left [ Y + \int\limits
 +
\left \{ X + \int\limits fe ^ {\int\limits a  dy } \
 +
dy \right \}
 +
e ^ {\int\limits b  dx - a  dy } \
 +
dx \right ] .
 +
$$
  
In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068019.png" />, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068020.png" /> to (1) can be obtained from the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068022.png" /> whose coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068023.png" /> and right-hand side <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068024.png" /> have the form
+
In case $  h \neq 0 $,  
 +
the solution $  u $
 +
to (1) can be obtained from the solution $  u _ {1} $
 +
of $  (2 _ {1} ) $
 +
whose coefficients $  a _ {1} , b _ {1} , c _ {1} $
 +
and right-hand side $  f _ {1} $
 +
have the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068025.png" /></td> </tr></table>
+
$$
 +
a _ {1}  = \
 +
a - (  \mathop{\rm ln}  h) _ {y} ,\ \
 +
b _ {1}  = b,\ \
 +
c _ {1}  = \
 +
c - a _ {x} + b _ {y} - b (  \mathop{\rm ln}  h) _ {y} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068026.png" /></td> </tr></table>
+
$$
 +
f _ {1}  = f _ {0} \cdot (a - (  \mathop{\rm ln}  h) _ {y} ) + f _ {y} ,
 +
$$
  
 
by means of the formula
 
by means of the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068027.png" /></td> </tr></table>
+
$$
 +
= \
 +
 
 +
\frac{u _ {1x }  + bu _ {1} - f }{h}
 +
.
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068028.png" />, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068029.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068030.png" /> is obtained by the above method; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068031.png" />, the process is further continued by constructing equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068032.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068033.png" />; the solution of (1) is expressed by means of quadratures in terms of the solutions of this sequence of equations. For the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068034.png" />, a chain of equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068035.png" /> can similarly be constructed for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068036.png" />. If at some stage <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068037.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068038.png" />) vanishes, then the general solution to (1) is obtained in quadratures.
+
If $  h _ {1} = 0 $,  
 +
the solution $  u _ {1} $
 +
of $  (2 _ {1} ) $
 +
is obtained by the above method; if $  h _ {1} \neq 0 $,  
 +
the process is further continued by constructing equations $  (2 _ {i} ) $
 +
for $  i = 2, 3 , . . . $;  
 +
the solution of (1) is expressed by means of quadratures in terms of the solutions of this sequence of equations. For the case $  k \neq 0 $,  
 +
a chain of equations $  (2 _ {i} ) $
 +
can similarly be constructed for $  i = - 1, - 2 , . . . $.  
 +
If at some stage $  h _ {i} $(
 +
or $  k _ {i} $)  
 +
vanishes, then the general solution to (1) is obtained in quadratures.
  
 
The cascade method can be used to pass from a given equation to an equation for which some other known analytic or numerical method of solution is more easily applied; for obtaining families of equations whose solutions are known and whose coefficients closely approximate those of the equations encountered in important applied problems; and finally for obtaining fundamental operators in perturbation theory of operators.
 
The cascade method can be used to pass from a given equation to an equation for which some other known analytic or numerical method of solution is more easily applied; for obtaining families of equations whose solutions are known and whose coefficients closely approximate those of the equations encountered in important applied problems; and finally for obtaining fundamental operators in perturbation theory of operators.

Latest revision as of 10:08, 4 June 2020


Laplace method

A method in the theory of partial differential equations enabling one, in some cases, to find the general solution of a linear partial differential equation of hyperbolic type,

$$ \tag{1 } Lu \equiv \ u _ {xy} + a (x, y) u _ {x} + b (x, y) u _ {y} + c (x, y) u = $$

$$ = \ f (x, y), $$

by constructing a sequence of equations

$$ L _ {i} u \equiv \ u _ {xy} + a _ {i} (x, y) u _ {x} + b _ {i} (x, y) u _ {y} + c _ {i} (x, y) u = \ ( 2 _ {i} ) $$

$$ = f _ {i} (x, y) , $$

$ i = \pm 1, \pm 2 \dots $ such that the solution of (1) is expressed in terms of the solutions of the latter.

Equation (1) can be written in one of the following forms:

$$ v _ {x} + bv - hu = f,\ \ w _ {y} + aw - ku = f, $$

where

$$ h = a _ {x} + ab - c,\ \ k = b _ {y} + ab - c, $$

$$ v = u _ {y} + au,\ w = u _ {x} + bu. $$

The functions $ h $ and $ k $ are called invariants of (1).

When $ h = 0 $, solving (1) reduces to the integration of ordinary differential equations, and its solution has the form:

$$ u = e ^ {- \int\limits a dy } \left [ X + \int\limits \left \{ Y + \int\limits fe ^ {\int\limits b dx } \ dx \right \} e ^ {\int\limits a dy - b dx } \ dy \right ] , $$

where $ X $ and $ Y $ are arbitrary functions of $ x $ and $ y $, respectively. Similarly, if $ k = 0 $, the solution of (1) can be written in the form

$$ u = e ^ {- \int\limits b dx } \left [ Y + \int\limits \left \{ X + \int\limits fe ^ {\int\limits a dy } \ dy \right \} e ^ {\int\limits b dx - a dy } \ dx \right ] . $$

In case $ h \neq 0 $, the solution $ u $ to (1) can be obtained from the solution $ u _ {1} $ of $ (2 _ {1} ) $ whose coefficients $ a _ {1} , b _ {1} , c _ {1} $ and right-hand side $ f _ {1} $ have the form

$$ a _ {1} = \ a - ( \mathop{\rm ln} h) _ {y} ,\ \ b _ {1} = b,\ \ c _ {1} = \ c - a _ {x} + b _ {y} - b ( \mathop{\rm ln} h) _ {y} , $$

$$ f _ {1} = f _ {0} \cdot (a - ( \mathop{\rm ln} h) _ {y} ) + f _ {y} , $$

by means of the formula

$$ u = \ \frac{u _ {1x } + bu _ {1} - f }{h} . $$

If $ h _ {1} = 0 $, the solution $ u _ {1} $ of $ (2 _ {1} ) $ is obtained by the above method; if $ h _ {1} \neq 0 $, the process is further continued by constructing equations $ (2 _ {i} ) $ for $ i = 2, 3 , . . . $; the solution of (1) is expressed by means of quadratures in terms of the solutions of this sequence of equations. For the case $ k \neq 0 $, a chain of equations $ (2 _ {i} ) $ can similarly be constructed for $ i = - 1, - 2 , . . . $. If at some stage $ h _ {i} $( or $ k _ {i} $) vanishes, then the general solution to (1) is obtained in quadratures.

The cascade method can be used to pass from a given equation to an equation for which some other known analytic or numerical method of solution is more easily applied; for obtaining families of equations whose solutions are known and whose coefficients closely approximate those of the equations encountered in important applied problems; and finally for obtaining fundamental operators in perturbation theory of operators.

The cascade method was discovered by P. Laplace [1] in 1773 and developed by G. Darboux [2].

References

[1] P.S. Laplace, , Oeuvres complètes , 9 , Paris (1893) pp. 5–68
[2] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18
[3] F.G. Tricomi, "Lectures on partial differential equations" , Moscow (1957) (In Russian; translated from Italian)
[4] V.M. Babich, et al., "Linear equations of mathematical physics" , Moscow (1964) (In Russian)
[5] G.A. Dombrovskii, "The method of adiabatic approximation in the theory of plane gas flows" , Moscow (1964) (In Russian)
[6] T.V. Chekmarev, "Generalized model systems of mixed-type equations" Izv. Vuzov. Mat. , 11 (1972) pp. 72–79 (In Russian)
[7] V.I. Pashkovskii, "Related operators and boundary-value problems for elliptic equations" Differential Eq. , 12 : 1 (1977) pp. 81–88 Differentsial'nye Uravneniya , 12 (1976) pp. 118–128
How to Cite This Entry:
Cascade method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cascade_method&oldid=14343
This article was adapted from an original article by V.I. Pashkovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article