Namespaces
Variants
Actions

Difference between revisions of "Clifford parallel"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
 
Line 4: Line 4:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.A. Bogomolov,  "An introduction to Riemann's non-Euclidean geometry" , Leningrad-Moscow  (1934)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  S.A. Bogomolov,  "An introduction to Riemann's non-Euclidean geometry" , Leningrad-Moscow  (1934)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR>
 +
</table>
  
  
  
 
====Comments====
 
====Comments====
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224701.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224702.png" />-dimensional Euclidean space, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224703.png" /> its associated projective space of all straight lines through the origin. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224704.png" /> let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224705.png" /> be the angle between the lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224706.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224707.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224708.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c0224709.png" /> with this metric is called the elliptic space associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247010.png" />. The topology induced by this metric is the usual one, i.e. the quotient topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247011.png" />. The article above deals with the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247012.png" />.
+
Let $E$ be $(n+1)$-dimensional Euclidean space, and $P = \mathbf{P}(E)$ its associated projective space of all straight lines through the origin. For $L,L' \in P$ let $d(L,L') \in [0,\pi/2]$ be the angle between the lines $L$ and $L'$ in $E$. Then $P$ with this metric is called the elliptic space associated with $E$. The topology induced by this metric is the usual one, i.e. the quotient topology of $E \rightarrow P$. The article above deals with the case $n=3$.
  
The (absolute) polar line to the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247013.png" /> through two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247016.png" /> is the line of all points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247017.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247019.png" /> denotes the usual inner product.
+
The (absolute) polar line to the line $\ell$ through two points $x = (x_0:x_1:x_2:x_3)$ and $y = (y_0:y_1:y_2:y_3)$ of $\mathbf{P}(\mathbf{R}^4)$ is the line of all points $z = (z_0:z_1:z_2:z_3)$ such that $\langle x,z \rangle = \langle y,z \rangle = 0$, where $\langle {\cdot},{\cdot} \rangle$ denotes the usual inner product.
  
The notion of Clifford parallelism is also considered on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247020.png" />-fold covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022470/c02247022.png" />, [[#References|[a2]]].
+
The notion of Clifford parallelism is also considered on the $2$-fold covering $S^3$ of $\mathbf{P}(\mathbf{R}^4)$, [[#References|[a2]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Klein,  "Vorlesungen über nichteuklidische Geometrie" , Springer  (1928)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. 84</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Klein,  "Vorlesungen über nichteuklidische Geometrie" , Springer  (1928)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. 84</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 21:45, 30 November 2016

A straight line in an elliptic space that stays at a constant distance from a given (base) straight line. Through each point lying outside a given line and outside its polar line there pass two Clifford parallels to the given line. The surface formed by rotating a Clifford parallel about its base line is called a Clifford surface. A Clifford surface has constant zero Gaussian curvature.

W. Clifford (1873) was the first to show the existence of Clifford surfaces.

References

[1] S.A. Bogomolov, "An introduction to Riemann's non-Euclidean geometry" , Leningrad-Moscow (1934) (In Russian)
[2] B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)


Comments

Let $E$ be $(n+1)$-dimensional Euclidean space, and $P = \mathbf{P}(E)$ its associated projective space of all straight lines through the origin. For $L,L' \in P$ let $d(L,L') \in [0,\pi/2]$ be the angle between the lines $L$ and $L'$ in $E$. Then $P$ with this metric is called the elliptic space associated with $E$. The topology induced by this metric is the usual one, i.e. the quotient topology of $E \rightarrow P$. The article above deals with the case $n=3$.

The (absolute) polar line to the line $\ell$ through two points $x = (x_0:x_1:x_2:x_3)$ and $y = (y_0:y_1:y_2:y_3)$ of $\mathbf{P}(\mathbf{R}^4)$ is the line of all points $z = (z_0:z_1:z_2:z_3)$ such that $\langle x,z \rangle = \langle y,z \rangle = 0$, where $\langle {\cdot},{\cdot} \rangle$ denotes the usual inner product.

The notion of Clifford parallelism is also considered on the $2$-fold covering $S^3$ of $\mathbf{P}(\mathbf{R}^4)$, [a2].

References

[a1] F. Klein, "Vorlesungen über nichteuklidische Geometrie" , Springer (1928)
[a2] M. Berger, "Geometry" , II , Springer (1987) pp. 84
How to Cite This Entry:
Clifford parallel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Clifford_parallel&oldid=17634
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article